

Revision | Final

Issue and revision record

Whole of Life Carbon Assessment							
Rev	Date	Description		Creator	Reviewer	Approver	
	:021		Name	s 9(2)(a)			- git
Draft	04/08/2	IBC version	Signature			1	000
	2021		Name			, Čt	
Final	17/09/	Final assessment	Signature			an r	
						+ ()	

This document is issued for the party which commissioned it and for specific purposes connected with the abovecaptioned project only. It should not be relied upon by any other party or used for any other purpose.

We accept no responsibility for the consequences of this document being relied upon by any other party, or being used for any other purpose, or containing any error or omission which is due to an error or omission in data supplied to us by other parties.

, oprietary int which commission official offici This document contains confidential information and proprietary intellectual property. It should not be shown to other parties without consent from us and from the party which commissioned it.

Table of Contents

	1	Introduction	1
	1.1	Project description	2
	1.2	What this report informs	30
	2	The ALR carbon narrative	
	2.1	Key findings	4
	3	Results and conclusions	. 5
	3.1	How to interpret the profiles	5
	3.2	Whole of Life Carbon Profile 1	6
	3.3	Whole of life carbon Profile 2	7
	3.4	Whole of Life Carbon Profile 3	8
	3.5	Whole of life Carbon MCA Options assessment outcome	10
	3.6	Overall project carbon performance assessment outcome	12
	4	Policy Context	13
	5	Environmental context	13
	6	Alignment to the IBC investment objectives and benefits	14
	7	ASI assessment for transport user emissions	14
	8	Overall carbon performance assessment	17
	8.1	Urban context carbon assessment	17
	8.2	Embodied carbon emissions from the Auckland EV fleet	18
	8.3	Carbon emission reduction intervention suite	20
	9	Whole of life carbon emissions assessment	25
	9.1	Assessment process	26
	9.2	Models	26
	9.3	Boundaries for each carbon source	27
	9.4	Annual operational carbon emissions	27
	9.5	Construction carbon emissions	30
	9.6	${f G}$ ransport system (enabled) carbon emissions	41
	9.7	Carbon emission reductions from the reduced demand for new roads	51
	9.8	Carbon emission reductions from building houses in brownfield areas	53
00	9.9	VEPM fleet and emission factors assumptions	56
Y	9.10	Assessment accuracy	57
	10	Recommendations for DBC	58

Table of Figures

Figure 1-1: Auckland Light Rail IBC. Source: https://www.lightrail.co.nz/light-rail/resources/	.2
Figure 3-1: Eactors assessed for the three Whole of Life Carbon Profiles for ALR	5
Figure 3-2: Wol. Profile 1 showing transport system emissions based on the 2051 emissions	
relative to the dominimum (tCO20/veer)	a'O'
Figure 2.2: 2051 emissions for each ALP option compared to the dominimum Source: MSM	
madel outputs deted 12 August 2021	7
Figure 2.4: Well Drafile 2 showing total and an aminging (transport construction and	. /
Figure 3-4: WOL Profile 2 showing total carbon emissions (transport, construction, and	0
operation) for each option as compared to the do-minimum option	8
Figure 3-5: Carbon energy emissions by industry and household in NZ. Source: Stats NZ	9
Figure 3-6: WoL Profile 3 showing the total carbon emissions (transport, construction,	
operation, road savings, energy savings) for each option when compared to the do minimum	
option	10
Figure 7-1: Transport user emission reduction intervention categories to reduce transport user	ſ
emissions	15
Figure 7-2: Organisations who control different transport user emission reduction interventions	S
	15
Figure 8-1: Illustration of a vehicle life cycle for ICEV and EVs. Source: Review and Meta-	
Analysis of EVs: Embodied Emissions Report	19
Figure 8-2: Electricity generation type. Source: Energy use in NZ 2020 from MBIE	19
Figure 8-3: Average embodied emissions from electric vehicles compared to petrol and diesel	
vehicles Source: Review and Meta-Analysis of EVs, Embodied Emissions and Environmental	
Breakeven	20
Figure 9-1: Operational carbon emissions model outputs.	29
Figure 9-2. Construction carbon emissions model output	32
Figure 9-3: Inputs and sources for the Carbon Transport User Emissions Model Version 2	42
Figure 10-1: PAS2080 showing ability to influence carbon reduction across the life cycle of	
infrastructure delivery	50
	00

Table of Tables

Table 1: Overall Project carbon performance - emission Reduction Potential Rating Table 2: Carbon Emissions along the ALR corridors. Source: Storymaps	13 14
Table 3: Transport user emission reduction interventions classified by Avoid, Shift,	or Improve
and owner	
Table 4-Most material transport user emission reduction interventions for ALR IBC.	
Table 5: Overall Project carbon performance - emission Reduction Potential Rating	25
Table 6: Data log for assessing operational emissions	
A substantial emissions and assumptions made for assessing operational emissions.	
Table 8: Results of the annual operational emissions for all five IBC options	
Table 9: Construction activities assessed and source of information	
Table 10: Assumptions made for assessing construction activities	
Table 11: Emissions from constructing at-grade rail tracks	
Table 12: Emissions from constructing tunnels	
Table 13: Emissions from constructing trenched sections of rail track	
Table 14: Emissions from constructing a bridge	
8 8	

Table 15: Emissions from constructing a light rail station	37
Table 16: Reference rail station construction emissions	37
Table 17: Assessment of the level of earthworks required	38
Table 18: Emissions from constructing rail tracks	38
Table 19: Emissions from constructing bridges	39
Table 20: Estimates of the emissions from constructing new stations	39
Table 21: Emissions from operating the TBM	39
Table 22: Carbon emissions from construction	40
Table 23: Light rail and metro construction emissions benchmarked with similar projects	41
Table 24 Transport system emissions assessed and sources of information:	42
Table 25: Transport activities assessed and associated drivers of carbon emissions for activity	У
	43
Table 26: Methodology and assumptions made for assessing transport system emissions	44
Table 27: GHG Rating Matrix	45
Table 28: Assumptions and metrics used to assess activity 1 and get a GHG rating	46
Table 29: Results of transport system carbon emissions assessment.	49
Table 30: Data log for assessing carbon reductions from reduced demand for new roads	51
Table 31: Methodology and assumptions made for assessing carbon reductions from reduced	I
demand for new roads	51
Table 32: Results of the road construction emissions assessment	52
Table 33: Data log for assessing reduced emissions from building houses along the corridor	53
Table 34: Methodology and assumptions made for assessing emissions savings from building	J
new houses	54
Table 35: Distribution of housing typologies in greenfield areas and along the CC2M corridor.	55
Table 36: Carbon emissions for different housing typologies (adjusted per person)	55
Table 37: Carbon emissions factors for building housing in greenfield areas and along the	
CC2M corridor	55
Table 38: Results of the operational emissions assessment	56
Table 39: VEPM 6.1 assumptions adopted for MSM	57
Table 40: Level of accuracy for carbon assessment	58

	A hand tiere	
	Abbreviations	
	Acronym	Description
	ALR	Auckland Light Rail
	AT 🔥	Auckland Transport
	IBC	Indicative Business Case
	MoE	Ministry of Environment
	Mot	Ministry of Transport
	MSM	Macro Strategic Model
	NLTP	National Land Transport Plan
0	VEPM	Vehicle Emission Prediction Model
	VKT	Vehicle Kilometre Travelled
	WoL	Whole of Life

1 Introduction

This report outlines the whole of life carbon assessment for Auckland Light Rail (ALR). It captures the second assessment conducted in September 2021 to inform the project's Indicative Business Case option refinement process.

It provides details of the assessment method applied in order to estimate the quantum of carbon emissions impact.

The seven sources of emission contribution and emission savings includes

- 1. Source 1 Emissions from ALR asset construction activities.
- 2. Source 2 Emissions from ALR asset operational activities.
- 3. Source 3 Emissions from transport users across Auckland due to the impact of ALR.
- 4. Source 4 Emission savings from reduced road construction and car parking spaces across Auckland due to the impact of ALR.
- 5. Source 5 Emissions savings due to lower energy requirements of denser housing typologies along ALR corridor.
- 6. Source 6 Emission savings due to urban design elements.
- 7. Source 7 Embedded EV emissions

The assessment determines the potential carbon emissions contribution and savings of three IBC options:

- Option 1a Dominion Road Light Rail
- Option 2b Sandringham Light Metro
- Option 3 Sandringham Light Metro/Light Rail Hybrid
- Do-minimum option City population growth excluding ALR and committed projects.

This assessment was conducted based on the MSM outputs dated 31 August 2021.

Assessment approach

• Whole of Life Carbon Assessment for IBC MCA - To conduct the IBC MCA the emission contribution and savings sources 1 to 5 were used to develop WoL Profile 3 The profile was used to choose the preferred option. The WoL only took into account emission reduction interventions that had different design elements across the options. It excluded the interventions that were consistently applied across all the options.

Overall Project Carbon Performance - To account for the emission reduction interventions that were applied consistently across the options. A carbon performance assessment was conducted which looked at the level of application of tailpipe emission reduction activities. This took into account the emission reduction potential of these interventions, as well as source 6 (emission savings due to urban design elements) and source 7 (embedded EV emissions) to provide an indicate emission reduction potential of the project overall.

1.1 Project description

The ALR Project is a key transport priority for Auckland. The Ministry of Transport, Waka Kotahi NZ Transport Agency, Auckland Council, Auckland Transport, Kāinga Ora, and Mana Whenua are working collaboratively on the Auckland Light Rail project to investigate how light rail or light metro could best support current and future city growth. The ambition is to deliver light rail or light metro between the Auckland city centre and Māngere¹ as shown in Figure 1-1.

Figure 1-1: Auckland Light Rail IBC. Source: https://www.lightrail.co.nz/light-rail/resources/

¹ https://www.lightrail.co.nz/?gclid=CjwKCAjwyIKJBhBPEiwAu7zII-

gNJBUzZ82JeAJLJqzW8xewV816w7saZQ9R7N6SD4zuGhjTji2n8BoCRzwQAvD_BwE&gclsrc=aw.ds

1.2 What this report informs

The results of this Whole of Life (WoL) carbon emissions assessment informs the strategic case, economic case, options development and urban workstream of the ALR project.

Figure 1-2 below outlines where the carbon narrative is embedded within the IBC by illustrating the main carbon analyses undertaken, and the relevant chapters in this report for further detail.

Figure 1-2: Carbon assessment informing the ALR IBC.

The results of this WoL carbon emissions assessment will also inform the Ministry of Environment's (MoE) Climate implications of policy assessment (CIPA)² advice, and considerations regarding potential Infrastructure Sustainability Council rating certification (ISC)³ of the project.

2 The ALR carbon marative

There are three carbon emissions analyses associated with ALR project, focussing on carbon emissions from construction activities, operational activities, and road user vehicles across the Auckland transport network. Road transport is a significant contributor to Auckland's carbon emissions profile. Introducing enhanced access to efficient public transport to and from the city centre will provide the opportunity to reduce Auckland's transport carbon emissions.

Auckland Council's 'Te Tāruke-ā-Tāwhiri Auckland's Climate Plan identifies its goal to increase public transport mode share⁴. ALR aims to provide a public transport rapid transit solution via either light metro or light rail. ALR is expected to help Auckland transition to a larger share of travel by public transport, particularly from private vehicles (mode shift). Attracting drivers away from independent car travel toward utilising ALR will contribute to carbon emission reductions over the lifespan of the ALR scheme. ALR rapid transit will carry

³ https://www.nzta.govt.nz/roads-and-rail/highways-information-portal/technicaldisciplines/environment-and-social-responsibility/sustainability-rating-schemes/

² https://environment.govt.nz/guides/climate-implications-of-policy-assessment-guidance-on-cabinet-requirement-for-central-government-agencies/

⁴ https://www.aucklandcouncil.govt.nz/plans-projects-policies-reports-bylaws/our-plansstrategies/topic-based-plans-strategies/environmental-plans-strategies/aucklands-climateplan/Documents/auckland-climate-plan.pdf

more people per trip than cars and buses and will therefore result in lower carbon emissions per passenger per kilometre.

2.1 Key findings

Will ALR contribute to reducing Auckland's carbon emissions?

 ALR is expected to contribute to reducing road user emissions in Auckland. The light rail options have a better carbon emissions profile (emission reductions are achieved earlier over time) when compared to the do minimum.

How are carbon emissions estimated?

- · Carbon emission sources included construction and operational activities
- Carbon emission savings came from transport user emissions, avoided road construction and lower energy requirements in denser housing typologies along the corridor.
- Emissions are estimated for construction and operation stages of ALR as well as the impact on the wider network from road user emissions from available data sources and benchmarked projects.
- The largest WoL carbon impacts are the transport user emissions.
- The factors assessed with the most material impacts on carbon reduction include infrastructure and household energy consumption from Profile 3.

Impacts on the Auckland transport network

- ALR rapid transit carries more people per trip than cars and buses and therefore results in lower carbon emissions per passenger per kilometre.
- ALR options encourage mode shift away from passenger vehicle to PT.
- Interventions designed into ALR support a predominant "Shift" and "Improve" strategy.

Assessment Outcomes

- The outcome of the Whole of Life carbon assessment used to compare and choose a preferred option showed Option 3 as the preferred option.
- The outcome of the Overall Project carbon performance showed that there are some emission reduction interventions out of control of the project (i.e. controlled by other government bodies) that have not been adopted that would result in emission savings due to the ALR project. The full list of interventions have been illustrated in the Intervention Suite in Chapter 7.3. Majority of the emission reduction interventions that can be controlled by the project have been adopted. As detailed design information is produced the level of emission reduction potential will be able to be assessed.
- As more detailed and accurate information about the design becomes available more accurate analysis should be undertaken at the DBC stage to determine a clearer projection of the whole of life carbon profile of ALR and whole project carbon performance.
- A Sustainability Strategy for the project is recommended to guide the next phase of design. It can provide guidance on carbon design principles and ISCA to create consistency across all aspects of the project in relation to environmental sustainability.

3 Results and conclusions

This chapter summarises key results for the whole of life carbon assessment for Auckland Light Rail (ALR). For more detailed interpretation of the results of this assessment refer to Chapter 9.

The results are illustrated in a carbon emissions profile which documents the cumulative emissions for different combinations of the emission sources from ALR compared to the dominimum option. Figure 3-1 illustrates the sources assessed for each profile. Note source 6 and 7 (urban design elements) have been assessed qualitatively outside the three profiles.

Whole of life Carbon Profile Assessment

Profile 1 Carbon emission savings from transport users over a 50 year period (source 3 only). Profile 2 Carbon impact assessment over 50 years including carbon emissions from transport user, construction and operations (source 1,2 and 3 only). Profile 3

Carbon impact assessment over 50 years including carbon emission from transport user, construction and operations, as well as carbon emission savings from the reduced need to build roads, and accomodating growth along the CC2M corridor (source 1, 2, 3, 4, 5)

Figure 3-1: Factors assessed for the three Whole of Life Carbon Profiles for ALR

3.1 How to interpret the profiles

Results are based on the information available at this early project stage and are indicative only.

To understand the whole of life carbon impact of the five ARL options, three discrete carbon profiles have been developed to illustrate cumulative emissions for each ALR option, compared to the do minimum option, from base year 2018, as used in MSM, and up to 2080.

For this carbon profile assessment, the design life of ALR assets have been assumed to be 100 years.

ઝેઈ

It is important to note that the MSM model considers the projected changes in Auckland's electric vehicle fleet composition for VEPM 6.1. See Chapter 9.8.3 for more details on VEPM 6.1.

For the purposes of developing a cumulative profile three assumptions have been made.

- It is assumed that the emissions every year from 2031 to 2050 have the same emissions as modelled in in 2031.
- Emissions for years after 2051 and up to 2081 will be the same as the emission modelled for 2051.
- The electric vehicle fleet composition from 2018 to 2051 follow the VEPM 6.1 projections. The electric fleet profile for years post 2050 remains the same at the percentage in 2050 (69%).

3.2 Whole of Life Carbon Profile 1

Figure 3-2 illustrates that options 2a result in the highest carbon emission savings when compared to the do minimum option, when assessing transport user emissions sources only. The emissions from each option were subtracted from those of the do minimum option illustrating "negative" carbon emissions (which represents the carbon emissions saved for each option). The steeper the graph, the faster the carbon emissions savings are realised over the life of the ALR asset for each the option.

Figure 3-2: WoL Profile 1 showing transport system emissions based on the 2051 emissions relative to the do minimum (tCO2e/year).

Figure 3-3 illustrates the 2051 emissions for each ALR option compared to the do minimum option.

Figure 3-3: 2051 emissions for each ALR option compared to the do minimum. Source: MSM model outputs dated 12 August 2021.

3.3 Whole of life carbon Profile 2

This assessment was undertaken by compiling the cumulative carbon sources and carbon savings sources (sources 1 to 5) to illustrate ALR project carbon emissions over a time-lapse profile. This assessment used the carbon emissions / year metrics from the MSM model.

Figure 3-4 shows the cumulative carbon emissions (construction, operation, and transport) for each of the ALR options, as compared to the do minimum option. A construction period of 7 years was assumed for all options and operational emissions were assumed to be constant throughout the 50-year period. Carbon emissions increase due to the construction period from 2023 but are offset from 2030 due to the benefits of mode shift and reduced VKT, as a result of the system becoming fully operational. Figure 3-4 illustrates that the ALR light rail options perform better than light metro options over the 50-year period, since they can inherently reduce more carbon emissions than the do minimum option and realise total carbon reduction benefits earlier than light metro options. Relative to the do minimum option, it can be expected that the carbon reduction benefits from light rail options will start to be realised by approximately 2051 (for Option 1b), whereas light metro carbon reduction benefits will start to be realised later, from around 2060.

There are embodied carbon impacts as a result of constructing each option due to the use of concrete and other materials. Due to the scale of construction of the underground light metro stations, the embodied carbon for the Light Metro and Hybrid options are significantly higher than for the Light Rail option.

Importantly, all options result in net reductions in carbon over the 50-year assessment period, with ongoing benefits past this assessment period. As shown in Figure 3-4, parity of carbon emissions, when compared to the do minimum scenario, from constructing the Light

Rail Option 1b is achieved after approximately 20 years of operation and the Light Metro Option 2a takes approximately 30 years.

Assumptions:

- The transport user emissions/year for modelled outputs for 2018 were assumed for each year until 2030.
- The transport user emissions/year for modelled outputs for 2030 were assumed for each year until 2051
- The transport user emissions/year for modelled outputs for 2050 were assumed for each year after 2051.
- A construction period of 7 years was assumed for all options and operational emissions were assumed to be constant throughout the 50-year period. Construction is assumed to begin in 2023.

Figure 3-4: WoL Profile 2 showing total carbon emissions (transport, construction, and operation) for each option as compared to the do-minimum option

Compared to the Do Minimum base case scenario by year 2081:

- The Dominion Light Rail option (1b) reduces carbon emissions by around 620,000 (CO2e.
- The Sandringham Light Metro option (2a) reduces carbon emissions by around 560,000 tCO2e.
- The Hybrid option (3) reduces carbon emissions by around 600,000 tCO2e.

3.4 Whole of Life Carbon Profile 3

Taking into account the household energy use and road construction factors contribute to significantly more carbon benefits for ALR when compared to the do minimum.

Energy emissions by industry and household (kilotonnes CO₂-e), actual, December 2018 year

Figure 3-5: Carbon energy emissions by industry and household in NZ. Source: Stats NZ

Figure 3-5 shows that a significant proportion of carbon emissions come from household energy use. This highlights the importance of including household energy use to develop Profile 3. A significant amount to emissions from households suggests that the need to reduce travel is key to reducing carbon emissions in NZ. This reinforces the need to consider the Avoid interventions as outlined in the Transport Emissions Pathway to Net Zero by 2050.

Similarly, to WoL Carbon Profile 2, Figure 3-6 illustrates the cumulative emissions (sources 1,2,3,4 and 5) for each of three ALR options compared to the do minimum option. Similar assumptions from Carbon Profile 2 were adopted in Carbon Profile 3.

Additional factors applied to all three ALR option included in WoL Carbon Profile 3 compared to Profile 2 include:

- Reduced carbon emissions due to the avoided need to construct roads and car parks, as a result of reduced demand for private vehicle travel. Emissions savings from construction of fewer roads and carparks range from 29,000 tCO2e to 31,000 tCO2e. These are based on calculations in Chapter 9.7.
- Reduced carbon emissions from the provision of higher density urban residential development in urban brownfield areas (adjacent the ALR alignment), relative to continuing to build singe detached dwellings in fringe greenfield areas of Auckland. Carbon emissions savings from high-density housing are primarily derived from savings in energy consumption and range from 4,000 tCO2e to 7,000 tCO2e per year.

Figure 3-6 illustrates that when compared to the do minimum option, carbon reduction benefits for ALR light rail options are realised by 2041. Carbon reduction benefits from the light metro and hybrid options are realised by the early 2050's (between 2052 and 2054). In contrast to WoL Carbon Profile 2, this assessment shows that by 2081, the light metro and hybrid option achieve greater overall carbon reduction benefits.

⁵ <u>https://www.stats.govt.nz/experimental/greenhouse-gas-emissions-industry-and-</u> household-september-2020-quarter

Figure 3-6: WoL Profile 3 showing the total carbon emissions (transport, construction, operation, road savings, energy savings) for each option when compared to the do minimum option.

Compared to the Do Minimum base case scenario by 2081:

- There are greater overall carbon emission benefits for each of the shortlisted options
- The Dominion Light Rail option (1b) reduces carbon emissions by around 860,000 tCO2e
- The Sandringham Light Metro option (2a) reduces carbon emissions by around 940,000 tCO2e.
- The Hybrid option (3) reduces carbon emissions by around 980,000 tCO2e.

3.5 Whole of life Carbon MCA Options assessment outcome

The table below documents the impact of the six carbon emission emitter and carbon savings analysed on each of the three ALR options.

To understand the whole of life carbon impact of all three cases, the cumulative carbon impact has been assessed on WoL Profile 3 (which captures five of the 7 sources). WoL Profile 3 and the qualitative urban assessment (source 6) has been used to determine a preferred option from the perspective of a carbon emissions reduction outcome.

Option 1B LRT Dominion	 Construction emissions (source 1) - Option 1b produces a lower amount of carbon emissions than light metro options, mainly because of the smaller station sizes that are predominantly above ground. The majority of construction emissions come from the large number of bridge structures required for the option. The option scored better than the hybrid and light metro options for cycle infrastructure provision. Operational emissions (source 2)- Operational emissions are higher for this option due to the longer track distance, which creates more kilometres travelled by the light rail system and requires more energy for network operations.

		Transport system carbon emissions (source 3) – Option 1b provides less capacity/hour than the light metro and hybrid options. It	
		has more stations along the proposed alignment compared to the	
		metro and hybrid options. The option scored better than the hybrid	
		and light metro options for cycle infrastructure provision. The carbon	
		amissions from the MSM modelling show carbon omissions from	
		trapapert agrees Augkland producing 1 694,000 tCO20/uppr, with	
		antion the with the highest earlier emissions. The mode shift from ear	21
		option to with the highest carbon emissions. The mode shift from car	U'
		to Pilactive modes was 5.0%. More general traffic roads are likely to	
		be removed for light rail options than metro and hybrid options. This is	
		represented in Carbon Profile 3.	
		Reduced road construction savings (source 4)* - Option 1b results	
		in 29,127 tCO2e savings, Option 2a at 30,745 tCO2e savings, and	
		Option 3 at 30,369 tCO2e savings. Option 2a create slightly more	
		emission savings than Option 3 and 1b.	
		Housing energy savings (source 5) – all options encourage higher	
		density housing typologies along the ALR corridor. Options 2a (6,947	
		tCO2e/year) and 3 (6,947 tCO2e/year) are along the same alignment	
		so they experience the same increase in population. They both have a	
		higher population after ALR than Option 15, so result in higher energy	
		emission savings than Option 1b (3,970 tCO2e/year).	
		Urban form emissions savings (source 6) – all options adopt transit	
		led development across the ALR corridor, and mixed-use zoning.	
	Option 2A Light	Construction emissions (source 1) - Option 2a produces the highest	
	Metro Sandringham	amount of carbon emissions, mainly because of the higher number of	
		stations that are located underground. The construction of	
		underground stations is carbon emissions intensive due to tunnelling	
		and concrete material volumes.	
		Operational emissions (source 2)- The track distance for this option	
		is lower than the participant inght rail option, but the capacity of the	
		fight metro vehicle is higher, and the services operate at higher	
		Trepenert austern aerben emissione (agures 2) Option 22	
		Transport system carbon emissions (source 3) – Option 2a	
		performed better than light rail options in terms of supporting high	
		density urban development and has more capacity/nour to encourage	
		mode shift. It is likely to provide more general traffic lanes than the	
		light rail options and the hybrid option. The carbon emissions from the	
	X	MSM modelling show carbon emissions from transport across	
		Auckland producing 1,677,000 tCO2e/year, with option 2a with the	
		lowest overall carbon emissions. The mode shift from car to PT or	
		active modes was 6.5%.	
	$\mathbf{\lambda}$	Reduced road construction and parking savings (source 4)* –	
		Option 1b results in 29,127 tCO2e savings, Option 2a at 30,745	
		tCO2e savings, and Option 3 at 30,369 tCO2e savings. Option 2a	
	5	create slightly more emission savings than Option 3 and 1b.	
	N	Housing energy savings (source 5) – all options encourage higher	
		density nousing typologies along the ALR corridor. Options 2a (6,947	
		tCO2e/year) and 3 (6,947 tCO2e/year) are along the same alignment	
50		so they experience the same increase in population. They both have a	
		nigner population after ALK than Option 1D, so result in higher energy	
		emission savings than Option TD (3,970 toO2e/year).	
		orban form emissions savings (source b) – all options adopt transit	
	Ontion 2 Linkt Dail	Transport system parker emissions (source 2) Ortion 2	
		Iransport system carbon emissions (source 3) – Uption 3	
	пурпа	periornis better than light rall options but slightly worse than light	
		metro options in terms of supporting urban density uplift. The key	

	advantage of option 3 over options 2a is its ability to remove space from road corridors for cars and make driving a less attractive option. However, in this regard, light rail options perform better. Mode shift from this option is higher than light rail options but lower than light metro options. The carbon emissions from the MSM modelling show carbon emissions from transport across Auckland producing 1,678,000 tCO2e/year, with higher carbon emissions than light metro, but lower than light rail options. Reduced road construction savings (source 4)* - Option 1b results in 29,127 tCO2e savings, Option 2a at 30,745 tCO2e savings, and Option 3 at 30,369 tCO2e savings. Option 3 create slightly less emission savings than Option 3. Housing energy savings (source 5) – all options encourage higher density housing typologies along the ALR corridor. Options 2a (6,947 tCO2e/year) and 3 (6,947 tCO2e/year) are along the same alignment so they experience the same increase in population. They both have a higher population after ALR than Option 1b, so result in higher energy emission savings than Option 1b (3,970 tCO2e/year). Urban form emissions savings (source 6) – all options adopt transit led development across the ALR corridor and mixed-use zoning
Option Proforance	All carbon omissions
Option Preference	 Construction emissions (source 1) - Option 1b based on the results in Chapter 10.5. Operational emissions (source 2) - Option 3 based on results in Chapter 10.4.
	 Transport system carbon emissions (source 3) - Option 2a based
	 Reduced road construction savings (source 4) – Option 2a based on results in Chapter 10.7
	 Housing energy savings (source 5) – Option 2a and 3 based on results in Chapter 10.8.
	 Urban form emissions savings (source 6) – all options rank the same based on the results in Chapter 8.1.
	• The cumulative emissions across all five carbon sources result in emission savings when compared to the do minimum option.
X	Taking into account all 5 whole of life carbon emission sources the preferred option is option 3 based on WoL Profile 3. It results in
()	more emission savings by 2081.

*Modelled based on peak travel demand for 2051

3.6 Overall project carbon performance assessment outcome

The outcome of the Overall Project carbon performance showed that there are some emission reduction interventions out of control of the project (i.e. controlled by other government bodies) that have not been adopted that would result in emission savings due to the ALR project. The full list of interventions have been illustrated in the Intervention Suite in Chapter 7.3. Majority of the emission reduction interventions that can be controlled by the project have been adopted. As detailed design information is produced the level of emission reduction potential will be able to be assessed.

The emission reduction potential for the refined options and do minimum based for the suite of interventions outlined in Chapter 7.3 are shown below. The key is shown in the table below.

Table 1: Overall Project carbon performance - emission Reduction Potential Rating

	Do min	Option 1b	Option 2b	Option 3
Emission reduction potential rating	2.3	3.0	3.1	3.0

Rating Description	Emission reduction potential rating
Emission increasing potential	0
Negligible emission reduction potential	1
Low to medium emission reduction	2,3,4
potential	
Medium to high emission reduction	5,6,7
potential	\sim

4 Policy Context

ALR has been developed against a background of policy expectations to accelerate decarbonization of transport in Auckland. Below are several relevant policy documents that apply to the ALR project It captures how the ARL project takes these policies into account through the busines case process.

Toitu te Taiao Our Sustainability Action Plan - Workstream 1 focuses on planning and investment levers to reduce carbon emissions. These levels are included in Arup GHG User Emissions Model used to assess transport system emissions activity 1 (emission reduction potential).

Auckland Climate Plan – reduce emissions by 50% by 2030 (from 2016 levels) and achieve net zero emissions by 2050. These targets have been considered when reflecting on the emission profile results.

Broader Outcomes Procurement Strategy – transitioning to a net-zero emissions economy. This will inform the ISCA Strategy and Assessment

The Ministry of Transport's 'Hīkina te Kohupara – Kia mauri ora ai te iwi - Transport Emissions: Pathways to Net Zero by 2050 (Green Paper) – Outlines the Avoid/Shift/Improve strategy which was used to inform the ASI Assessment in Chapter 8.

Emission Reduction Plan - policies and strategies to reduce emissions and increase removals to meet the emissions budget for each sector including transport.

Environmental context

The data in Table 2 has been extracted from the Waka Kotahi StoryMap Database. The table shows the tail pipe (transport user) emissions along the road corridors for the proposed five options. Cross sections for the majority of these roads have more space dedicated to passenger vehicles lanes, parking, and bus lanes. This means a significant proportion of the

ationAct

road corridor caters to an existing NZ fleet that produces carbon emissions. This was used to inform the baseline carbon emissions.

Pood corridor	CO2 t/k	CO2 t/km/year		
Road corridor	Low	High		
Symonds St	1,344	2,245		
Queen St	1,027	1,690		
Ian McKinnon Dr	2,414	2,489		
Dominion Rd	1,794	1,966		
Sandringham Rd	1,346	1,626		
SH20 (Mount Roskill to Onehunga)	3,012	4,934		
Onehunga Mall	1,272	1,570		
Neilson St	966	2,677		
Bader Dr	753	1,934		
SH20 (Mangere)	3,945	5,340		
SH20a	1,653	2,087		

Table 2: Carbon Emissions along the ALR corridors. Source: Storymaps

6 Alignment to the IBC investment objectives and benefits

The GPS 2020⁶ alignment activities for carbon are:

- Percentage reduction in private vehicle kilometres travelled
- Percentage reduction in Q_2 emissions

These metrics have been included in the carbon assessment methodology documented in this report. These have been documented in Chapter 9.

The GPA alignment priorities require spatial and geographical boundaries of the activity to be defined. These have been documented in Chapter 9.3.

The Arup GHG Tool has a catalogue of transport user emission interventions categorised by NLTP work categories, ASI category, owner, and emission reduction potential.

sessment for transport user emissions

⁶ Investment Prioritisation Method for the 2021–24 National Land Transport Programme Dec 2020

There are four types of interventions in the catalogue available to reduce transport user emissions are shown in Figure 7-1.

Figure 7-2: Organisations who control different transport user emission reduction interventions

The transport user emission reduction interventions from Arup GHG Tool considered in the ALR transport user carbon assessment is outlined in the table below. Table 3 also illustrates who is owner of the intervention and the Avoid, Shift, or Improve category of the intervention. Majority of these interventions where the same across all the five options and the do minimum option. The blue rows represent avoid interventions, green rows represent the improve interventions, yellow rows represent the shift interventions.

Table 2: Transport upor omission	roductio	nintoniontions	classified by	Avoid	Shift or I	mprovo and	ownor
Table 5. Transport user emission	Functio		classified by	Avoiu, v	<i>Shint, Or I</i>	inpiove and	Owner

	Owner/who has control	ASI classification	Transport user emission reduction interventions
	AT 🔰	Avoid	Rideshare matching and incentives
	Auckland Council	Avoid	Urban planning codes and practices
	The Project	Avoid	Transit oriented development (TOD) zoning - mixed use (residential and zoning) vs single use complemented by higher population density
	Central		Cordon and/or network pricing
	and Auckland		
	Council	Avoid	
	Market	Avoid	Flexitime schedules
0	Market	Avoid	Compressed work weeks and telework, work from home policy by commercial businesses
	Market	Avoid	Car-sharing programmes
	Waka Kotahi	Avoid	Motor fuel taxes
	AT	Improve	Low emission public transport
	AT	Improve	Electric bus fleet composition
	AT	Improve	Transport concessions

Auckland Council	Improve	Charging infrastructure for ev - residential
EECA	Improve	Charging infrastructure for ev - public
Market	Improve	Charging infrastructure for ev - commercial
Market	Improve	Commercial delivery fleet composition
Ports of Auckland	Improve	Electric road vehicles
Waka Kotahi	Improve	Efficient cars and motorcycles
Waka Kotahi	Improve	Efficient trucks
Waka Kotahi	Improve	Support uptake of low emission vehicles $\$
The Project	Shift	Roadway capacity expansion
AT	Shift	Support micro mobility shared services
AT	Shift	Parking pricing
AT	Shift	Managing on-street parking supply
Auckland Council	Shift	Parking requirements
		Public transport service improvements (frequency,
The Project	Shift	efficiency, reliability)
The Project	Shift	Light rail, metro rail and commuter rail systems
The Project	Shift	Bus rapid transit
		New and improved sidewalks and pedestrian
The Project	Shift	crossings.
		Bicycle infrastructure, networks, and support
The Project	Shift	programmes
The Project	shift	Removing road capacity for passenger travel

Of these, the interventions with the most material impacts to the transport user emissions across the five options are outlined in Table 4 below. These interventions where those that represented the main differences across the five options.

Table 4: Most material transport user emission reduction interventions for ALR IBC

	Interventions	ASI	Metrics that influence transport user emissions		
	Transit oriented development (TOD)	Avoid	 Increased development density via GFA uplift within the 800m catchment, 		
	Urban planning	Avoid	 Equal split in mixed use zoning via GFA uplift for residential and employment zones, removal of general traffic road capacity. 		
Rele	Light rail, metro rail and commuter rail systems	Shift	 An attractive PT via light rail/light metro would promote mode choice to PT and away from the car based on the capacity, travel time, number of stations provided. 		
	Removing road capacity for passenger travel	Shift	 Fewer road capacity for general traffic means PT and active modes become more attractive options. 		
	Bus rapid transit	Shift	 Attractive bus rapid transit to support connection to the light rail/light rail system (number of stations and urban interchanges along the proposed alignment) would promote interconnectivity to other transit and active modes. 		

Shift	•
	Shift

Provision of improved cycle infrastructure and connection to existing cycle network promotes the use of low emission modes.

ASI ASSESSMENT CONCLUSIONS

The predominant ASI strategy used in ALR to reduce transport user emissions are shift and avoid which utilised land use and transport design features to influence emission reduction from transport users.

It is important to recognise that the ALR Project team do not have control over majority of the interventions, and so it is important to have a coordinated effort across these groups. It is the collective decisions across these groups that will maximise ALR's potential in reducing emissions in Auckland.

8.1 Urban context carbon assessment

Currently, Auckland's urban form has been characterized by sprawl, with relatively high levels of development in greenfield sites and in areas further away from areas of employment, education, or recreation. This has driven an increase in carbon emissions, both from an increase in distance travelled and from the need to construct new infrastructure to service these new developments (such as roads, water infrastructure etc). Since the introduction of the Auckland Unitary Plan, more development has been occurring in existing brownfield areas. Residents in brownfield areas travel smaller distances and have better access to sustainable forms of transport, which results in a lower transport carbon emissions footprint. However, to keep up with population growth and demand, a significant proportion of new housing developments are still expected to occur in greenfield areas, which will continue to drive an increase in carbon emissions.

The proposed scheme is expected to play a significant role in shaping Auckland's urban form, and act as a trigger for urban redevelopment in brownfield areas. More medium to high density developments are expected to occur in the corridor, instead of in new greenfield areas, which will be accompanied by a change in land use. This change in land use and urban form, accompanied by improved public realm, streetscapes and open space is expected to encourage mode shift, with people choosing to travel by more sustainable forms of transport. This forms the basis for some of the most significant benefits of light rail, namely, the scheme will help promote sustainable urban form and reduce Auckland's carbon footprint.

The urban carbon emission saving interventions adopted in the ALR IBC are shown below. Those classified as no are either due lack of design detail in IBC stage, out of scope for the urban design business case team.

Document	Owner/who has control	Emission reduction intervention type	Urban emission reduction intervention	Adopted for ALR IBC
Business Case Urban Design	The Project	Urban design	Transit oriented development (TOD) Zoning - mixed use (residential and zoning) vs single use complemented by higher population density	yes
District Green Freight Plan	Auckland Council	Urban regulatory	Regional freight distribution centres, inland ports, and logistics parks	no
Business Case Urban Design	The Project	Urban design	Higher density housing	yes
Business Case Urban Design	The Project	Urban design	Higher development density and wixed-use zoning	yes
Business Case Urban Design	The Project	Urban design	Pedestrian friendly environment	no
Business Case Urban Design	The Project	Urban design	Attractive public realm to encourage mode shift from the car	no
District Plan/Master Plan	AT	Urban regulatory	Car free zones & restricted traffic streets or pedestrian only streets	no
District Plan/Master Plan	AT	Urban regulatory	Managing on-street parking supply	no
District Plan/Master Plan	Auckland Council	Urban regulatory	Parking requirements	no
District Plan/Master Plan Parking strategy	AT	Urban regulatory	Parking pricing	no
District Plan/Structure Plan	Auckland Council	Urban regulatory	Urban planning codes and practices	no

8.1.1 Results

The Project is adopting majority of the carbon reduction interventions they have control over, however majority of the interventions outside of the control of the Project team have not been adopted.

8.2 Embodied carbon emissions from the Auckland EV fleet

Electric vehicles (EVs) are often considered a potential solution to mitigate greenhouse gas GHG) emissions originating from personal transport vehicles and public transport. However, to assess the WoL impact of emission from ALR, it is important to consider the embodied carbon emissions from the Auckland fleet from the assumed first year of operations 2031. Figure 8-1 shows the typical whole of life GHG emissions factors for ICEV and EV vehicles.

Figure 1. Illustration of a vehicle life cycle (adapted from 5.6).

Figure 8-1: Illustration of a vehicle life cycle for ICEV and EVs. Source: Review and Meta-Analysis of EVs: Embodied Emissions Report⁷

The most significant factors of emissions over the whole life of an EV is the GHG grid intensity for the Well to Wheel life cycle stage are the charging activities.

Figure 8-2: Electricity generation type. Source: Energy use in NZ 2020 from MBIE⁸

It is important to consider power generation for the charging activities of EV especially as the NZ electric fleet grows. Transport accounts for 40% of the national energy demand at a 0.3%

⁷ https://www.mdpi.com/2071-1050/12/22/9390/pdf

⁸ https://www.mbie.govt.nz/dmsdocument/11679-energy-in-new-zealand-2020

electric car fleet composition outlined in VEPM 6.1⁹. Figure 8-2 shows the energy generation mix in NZ. In 2020 61% of the electricity grid was from zero emission sources hydro, solar and wind¹⁰. Overall, the GHG grid intensity in 2020 was 0.101 gCO2e/MWh.

8.2.1 Results

A study conducted case studies globally to determine the average embodied emissions from electric vehicles compared to petrol and diesel vehicles shown in Figure 8-3. Electric vehicles have higher GHG emissions in the production phase (vehicle and battery production). However, it is important to note that majority of the NZ fleet are imported. This means the majority of these production embodied emissions are likely to be created offshore.

Table 7. Mean, standard deviation (SD), and population size *n* of emissions from production, WTW, maintenance, EOL, and energy efficiency from all studies reviewed.

	Production (tCO ₂ eq.)	Energy Efficiency (EV: kWh/100 km ICEV: L/100 km)	WTW Emissions (gCO ₂ eq/km)	Maintenance (gCO ₂ eq/km)	EOL (tCO ₂ eq)
Mean	10.8	16.7	132.2	10.1	0.2
SD	2.38	3.15	107.1	5.06	1.55
n	24	23	40	14	13
Mean	6.6	7.6	237.1	12	0.4
SD	2.01	2.12	63.64	5.55	1.05
n	18	17	23	12	14
Mean	6.1	5.2	154.3	10.1	-0.6
SD	1.25	1.03	32.7	4.82	1.06
n	6	5	8	4	4
	Mean SD n Mean SD n Mean SD n	Production (tCO2 eq.) Mean 10.8 SD 2.38 n 24 Mean 6.6 SD 2.01 n 18 Mean 6.1 SD 1.25 n 6	Production $(tCO_2 eq.)$ Energy Efficiency $(EV: kWh/100 km)$ Mean10.816.7SD2.383.15n2423Mean6.67.6SD2.012.12n1817Mean6.15.2SD1.251.03n65	Production $(tCO_2 eq.)$ Energy Efficiency $(EV: kWh/100 km)$ $ICEV: L/100 km)$ W1W Emissions $(gCO_2 eq/km)$ Mean10.816.7132.2SD2.383.15107.1n242340Mean6.67.6237.1SD2.012.1263.64n181723Mean6.15.2154.3SD1.251.0332.7n658	Production ($tCO_2 eq.$)Energy Efficiency ($EV: kWh/100 km$ $ICEV: L/100 km$)WTW Emissions (gCO_2eq/km)Maintenance (gCO_2eq/km)Mean10.816.7132.210.1SD2.383.15107.15.06n24234014Mean6.67.6237.112SD2.012.1263.645.55n18172312Mean6.15.2154.310.1SD1.251.0332.74.82n6584

Figure 8-3: Average embodied emissions from electric vehicles compared to petrol and diesel vehicles Source: Review and Meta-Analysis of EVs: Embodied Emissions and Environmental Breakeven¹¹

8.3 Carbon emission reduction intervention suite

The table below captures the emission reduction interventions, the intervention type, which organisation has control to adopt the intervention, and the document name the decision to adopt the intervention would be captured.

The suite can be used to determine which emission reduction activities can be adopted not only by the project design team but by the wider ecosystem which all inform the carbon performance of ALR.

Emission reduction interventions	Document	Owner/who has control	Intervention Type
Support micro	District micro mobility plan	AT	Policy
shared			
services			

⁹ https://www.mbie.govt.nz/dmsdocument/11679-energy-in-new-zealand-2020

¹⁰ https://www.mbie.govt.nz/building-and-energy/energy-and-natural-resources/energy-statistics-and-modelling/energy-statistics/electricity-statistics/

¹¹ https://www.mdpi.com/2071-1050/12/22/9390/pdf

	Rideshare matching and incentives	On demand transport regional roadmap	AT	Policy	
	Low emission public transport	ZEB PT transition roadmaps, NZ ZEB Working Group	AT	Policy	
	Bus fleet composition	ZEB PT transition roadmaps, NZ ZEB Working Group	AT	Policy	51
	Transport concessions	Council fare/discount strategy	AT	Regulatory	
	Car free zones & restricted traffic streets in pedestrian only streets	District Plan/Master Plan	АТ	Urban regulatory	
	Managing on- street parking supply	District Plan/Master Plan	AT	Urban regulatory	
	Parking pricing	District Plan/Master Plan Parking strategy	Auckland Council	Urban regulatory	
	Charging infrastructure for EV - residential	Council building code requirements	Auckland Council	Regulatory	
	Tax incentives for alternative mode use and disincentives for employer provided free parking	Council low emission travel strategy	Auckland Council	Regulatory	
	Freight pricing and management	District Green Freight Plan	Auckland Council	Regulatory	
	Regional freight distribution centres, inland ports, and logistics parks	District Green Freight Plan	Auckland Council	Urban regulatory	
	Parking requirements	District Plan/Master Plan	Auckland Council	Urban regulatory	
10	Urban planning codes and practices	District Plan/Structure Plan	Auckland Council	Urban regulatory	
8°	Cordon and/or network pricing	Council Emission Reduction Plan (Transport and land use elements)	Central Government, Auckland Transport and Auckland Council	Policy	

	Congestion pricing (e.g. Peak period) new (N) and existing €	Council congestion pricing strategy	Council	Policy	
	Fare system improvements	Business Case Transport Design	Council	Transport service/infrastructure	2
	Car-sharing programmes	Car sharing transport regional roadmap, market driven	Council and Market	Regulatory)
	Charging infrastructure for EV - public	Council EV uptake strategy, EV Charging Roadmap	EECA	Regulatory	
	Efficient ships	Green Maritime import and export regulations, Low Emission Port Strategy	Maritime NZ, Ports	Regulatory	
	Flexitime schedules	Market driven	Market	Market driven	
	Compressed work weeks and telework, Work from home policy by commercial businesses	Market driven	Market	Market driven	
	Charging infrastructure for EV - commercial	Council building code requirements	Market	Regulatory	
	Commercial delivery fleet composition	Council Green Freight plan (urban form and transport network elements)	Market	Regulatory	
	Biofuels	National Green Freight Plan	Ministry of Transport	Regulatory	
	Intra- and inter-regional low carbon freight modes	District Green Freight Plan	Mot, Auckland Council, EECA	Regulatory	
	Electric road vehicles	EVUptake strategy, NZTA Green car import regulations, NZTA Clean Car standards	Ports of Auckland	Policy	
×	Public transport service improvements (frequency, efficiency, reliability)	Business Case Transport Design	The Project	Transport service/infrastructure	
80	Public transport service improvements (frequency, efficiency, reliability)	Business Case Transport Design	The Project	Transport service/infrastructure	

	Light rail, metro rail and commuter rail systems	Business Case Transport Design	The Project	Transport service/infrastructure	
	Light rail, metro rail and commuter rail systems	Business Case Transport Design	The Project	Transport service/infrastructure	3
	Bus rapid transit	Business Case Transport Design	The Project	Transport service/infrastructure	
	Public transport integration in priority corridors	Business Case Transport Design	The Project	Transport service/infrastructure	
	Public transport integration in priority corridors	Business Case Transport Design	The Project	Transport service/infrastructure	
	New and improved sidewalks and pedestrian crossings.	Business Case Transport Design	The Project	Transport service/infrastructure	
	New and improved sidewalks and pedestrian crossings	Business Case Transport Design	The Project	Transport service/infrastructure	
	Traffic calming	Business Case Transport Design	The Project	Transport service/infrastructure	
	Bicycle infrastructure, networks, and support programmes	Business Case Transport Design	The Project	Transport service/infrastructure	
	Intelligent transportation systems	Business Case Transport Design	The Project	Transport service/infrastructure	
	Traffic management	Business Case Transport Design	The Project	Transport service/infrastructure	
.0	Roadway capacity expansion	Business Case Transport Design	The Project	Transport service/infrastructure	
Pole	Roadway capacity expansion	Business Case Transport Design	The Project	Transport service/infrastructure	
	Roadway capacity expansion	Business Case Transport Design	The Project	Transport service/infrastructure	
	Multi modal connectivity	Business Case Transport Design	The Project	Transport service/infrastructure	

	(covered in				
	Public				
	integration in				
	priority				
	priority				_
	comuois				$\mathbf{\Omega}$
	Subcategory)	Business Case Transport Design	The Droject	Transport	トレ
	Public	Business Case Transport Design	The Project		O'
	transport			service/initastructure	
	improvemente				
	(frequency)			X	
	officioney,				
	roliability)				
	Trancit	Rusiness Case Urban Design	The Project	Lirbandosign	
	oriented	Business Case Orban Design	The Project	Orban design	
	dovelopment			•. O`	
	(TOD) Zonnig		9		
	(residential		~		
	and zoning) ve				
	single use				
	complemented		XU		
	by higher		\sim		
	population				
	density		•		
	Higher density	Business Case Urban Design	The Project	Urban design	
	housing		,	Ŭ	
	Higher	Business Case Urban Design	The Project	Urban design	
	development			-	
	density and	U			
	mixed-use	0			
	zoning				
	Pedestrian	Business Case Urban Design	The Project	Urban design	
	friendly				
	environment				
	Attractive	Business Case Urban Design	The Project	Urban design	
	public realm to	\sim			
	encourage				
	from the por				
	Support	Council EV/ uptako stratogy NZTA	Waka Katabi	Policy	
	Support	Groop car import regulations NZTA	VVaka Kulani	Policy	
	emission	Clean Car standards			
	vehicles	olean dai standards			
.0	Motor fuel	Council fuel tax regulations	Waka Kotahi	Policy	
	taxes				
\sim	Efficient cars	NZTA Green car import regulations	Waka Kotahi	Policy	
	and				
•	motorcycles				
	Efficient trucks	NZTA Green car import regulations,	Waka Kotahi	Policy	
		EECA support industry to transition			
		to green freight, Green Freight mot			
		Policy			

Road user fees for new(N) and existing roads	RUC Regulations	Waka Kotahi	Policy	
Motor vehicle registration fees and taxes	Vehicle registration regulations	Waka Kotahi	Regulatory	٩,
Motor vehicle quota systems	Vehicle registration regulations	Waka Kotahi	Regulatory)"
License plate restrictions	Vehicle registration regulations	Waka Kotahi	Regulatory	
Eco-driving and vehicle maintenance	Vehicle registration regulations	Waka Kotahi	Regulatory	
Reduce national speed limits on motorways	National Speed Management Plan	Waka Kotahi	Transport service/infrastructure	
Travel demand management	Business Case Transport Design	Waka Kotahi	Transport service/infrastructure	

The emission reduction potential for the refined options and do minimum based for the suite of interventions outlined in Chapter 7.3 are shown below. The key is shown in the table below.

Table 5: Overall Project carbon performance - emission Reduction Potential Rating

	Do min	Option 1b	Option 2b	Option 3
Emission reduction potential rating	2.3	3.0	3.1	3.0

Rating Description	Emission reduction potential rating
Emission increasing potential	0
Negligible emission reduction potential	1
Low to medium emission reduction potential	2,3,4
Medium to high emission reduction	5,6,7
potential	

Whole of life carbon emissions assessment

A secondary WoL carbon assessment was undertaken in September 2021 to inform the IBC design for the ALR project. This assessment was conducted only for Options 1b, 2a and 3. This report considers what the wider network impact be in the longer term across Auckland, in order to gain an understanding of what the full long-term effects might be. Five IBC options for ALR are considered within this report as well as the do-minimum option. The key differences are the route (Dominion Road or Sandringham Road) and the mode (light rail or light metro) (including the option for northwards extension). The IBC options for ALR are:

- Do minimum
- Option 1b light rail along the Dominion Road alignment
- Option 2a light metro along the Sandringham Road alignment
- Option 3 combination of light rail and light metro along the Sandringham Road alignment

The WoL carbon impact assessment was informed by five emission sources listed below. The key outputs of the assessment included emission reduction potential, emissions reduction per year, and emission profile over 60 years. The results are dependent on available data at the time of the assessment. The methodology, data sources, assumptions for each of the three emission assessments are documented in this report.

The seven sources of emission contribution and emission savings include:

- 1. Source 1 Emissions from ALR asset construction activities.
- 2. Source 2 Emissions from ALR asset operational activities.
- 3. Source 3 Emissions from transport users across Auckland due to the impact of ALR.
- 4. Source 4 Emission savings from reduced road construction and car parking spaces across Auckland due to the impact of ALR.
- 5. Source 5 Emissions savings due to lower energy requirements of denser housing typologies along ALR corridor.

9.1 Assessment process

- 1. Undertook literature review of carbon assessment methodologies for metro and light rail emissions. Refer to the footnotes in the report for sources. Refer to Chapter 9.5.6 for carbon emissions from international light rail and metro projects.
- 2. Engagement with project design team to understand the design features and assumptions.
- 3. An internal peer review of the carbon methodologies developed for this carbon assessment.
- 4. The assessment was conducted, and the following items were documented for each of the three carbon emissions sources in Chapter 9.
 - Data log
 - Activities and factors considered
 - Summary of the assessment methodology and assumptions for each activity
 - Exclusions from the assessment at IBC stage due to data availability

9.2 Models

Three models were developed by Arup. Each model used to assess the carbon emissions from each of the three carbon sources.

- Waka Kotahi Carbon Transport User Emissions Model Version 2– used to determine emission reduction potential, conduct the ASI assessment, and conduct the WoL Profile assessment.
- Carbon Construction Model Version 1 used to determine the emissions associated from the construction of ALR assets.
- Carbon Operations Model Version 1- used to determine the energy use and associated emissions from ALR assets.

9.3 Boundaries for each carbon source

As required by the GPS Alignment Investment Prioritisation Method, the following boundaries were defined for the carbon assessment for each of the three carbon emission sources.

Transport user emissions	Construction emissions	Operational emissions
 The boundary is based on the MSM boundary, i.e. all of Auckland. Other boundaries which informed the factors assessed included: Land use change and development capacity assumptions = 1km either side of the corridor Station catchments = 800m walking catchment Zone catchments for population growth around the corridor. 	The legal boundary of the corridor and station buildings.	The boundary based on the emissions from the equipment used to operate the rapid transit system. This includes the rolling stock and stations buildings.

9.4 Annual operational carbon emissions

The operational carbon impact of the proposed scheme is reported in tCO2e and was assessed for a single year of operation for ease of comparison across the different options. New Zealand's electricity grid is expected to become more renewable over time, with the Climate Change Commission recommending a target of 95-98% renewable electricity by 2030. As such, it can be expected the operational emissions from ALR to be lower than what has been estimated in this chapter.

Data log table

Table 6 in the first column shows the factors that were identified that can influence the operational emissions for light rail ad light metro. It shows which of these datasets were available for the assessment and the associated source. Due to a lack of information around station energy requirements, assessment of the operational carbon emissions from the stations (lighting, ventilation etc.) was not included. Annual operational carbon emissions were assessed for the operation of all options.

Table 6: Data log for assessing operational emissions

Material impact	Dataset	Available for IBC MCA assessment?	Source
High	Track distance km	Yes	ALR briefing presentation by Andrew Hale on 2/08/21
High	Gradient of alignment	Yes	ALR briefing presentation by Tilo Franz on 2/08/21
High	New Zealand electric grid carbon footprint	Yes	Measuring emissions: a guide for organisations (MfE) ¹²
High	Energy requirements for rolling stock	No	Use of reference estimates of energy consumption for typical light rail and metro schemes ¹³
High	Frequency and capacity	Yes	ALR briefing presentation by Theunis Van Schalkwyk on 2/08/21
Medium	Station and depot operational requirements	No	No source available. Recommended to be used for DBC assessment.
Low	Trackside ventilation	No	No source available. Recommended to be used for DBC assessment.
Low	Lighting	No	No source available. Recommended to be used for DBC assessment.
Low	Asset maintenance	No	No source available. Recommended to be used for DBC assessment.
High	Regenerative braking	No	No source available. Recommended to be used for DBC assessment.

9.4.2 Calculation methods & assumptions

Table 7 details the methodology and assumptions made for assessing annual operational emissions.

Table 7: Methodology and assumptions made for assessing operational emissions

	Methodology	Assumptions
	Calculate distance travelled along the light rail/metro	Services operate at 4-minute intervals for light rail and 3- minute intervals for light metro during peak hours and 8-
	system for a given year	minute intervals during non-peak hours for both.
	Use typical values of energy consumption per km for light rail/metro to determine approx. values of energy consumption for the system	As gradients across the different options do not vary significantly from each other, it was assumed that gradient would not affect operational emissions greatly. This assessment did not include the use of regenerative braking which will substantially lower operational emissions.
2ele	Use emissions factors to calculate carbon emissions for each option	Emissions from the electricity grid will remain at 2018 level by the time of completion for light rail and metro. In reality, it is likely that New Zealand's electricity grid will become increasingly renewable, and the emissions factor will reduce. There is even a possibility that the electricity grid
Y		

 ¹² MfE (2020). Measuring emissions: a guide for organisations. Available from: <u>https://environment.govt.nz/assets/Publications/Files/Measuring-Emissions-Detailed-Guide-2020.pdf</u>
 ¹³ ETSAP (2011). Public transport. Available from: <u>https://iea-etsap.org/E-TechDS/PDF/T10_Public_Transport_v3_final_gs06062011.pdf</u>

Figure 9-1: Operational carbon emissions model outputs

9.4.3 Exclusions:

- Regenerative braking this has the potential to substantially lower operational emissions
- The effect of gradient on operational emissions
- Energy requirements of the rolling stock rolling stock specifications have yet to be determined
- Station and depot operational emissions (from lighting, asset maintenance, trackside ventilation, signalling, communications)

9.4.4 Results

Operational emissions are higher for options that travel more service kilometres, such as the Sandringham road options. Light metro options require more electricity as they have higher frequencies and carry more passengers. The hybrid and light rail on dominion road options performs the best operationally as it has carried fewer passengers and has a lower frequency than light metro options. See Table 8 for detailed results.

		Option	Option	Option
	Operational emissions	1b	2a	3
	Track distance (km)	24.0	24.0	24.5
	Services per year	76,650	83,950	76,650
	Maximum capacity (seats)	128	150	128
ele	Energy consumption (kWh/seat- km)	0.08	(0.07
	Energy consumption (MWh)	18,838	21,155	16,826
	Emissions factor (tCO2e/MWh)		0.101	
	GHG emissions (tCO2e)	1,903	2,137	1,699

Table 8: Results of the annual operational emissions for all five IBC options

	1,100	1,300	1,000
GHG emissions (tCO2e)	_ 2,700	_ 3,000	– 2,400
MCA score	-1	-2	-1

9.5 Construction carbon emissions

0,61 Construction carbon represents the carbon emissions associated with construction operations such as constructing the light rail infrastructure, as well as the embedded cateon within the bulk construction materials. The assessment of embedded carbon has included the carbon impact from the construction of each of the 5 options. The aim was to understand the estimated difference in carbon emissions across the 5 options.

The approach for the assessment is summarised below:

- Identification of embedded carbon from a collection of construction activities
- Collation of data and associated emissions factors •
- Estimation of the relative difference in carbon impact •

9.5.1 Data log table

Table 9 details the construction factors assessed and the sources of information used for the assessment. Information concerning earthworks and utilities was only partially available, and information around new roading layouts and the transportation of materials was not available.

	Most material impact	Dataset	Available for IBC MCA Assessment?	Source/date/drawing name/version
ele	High	Rail tracks – at grade, trenched, tunnelled	Yes	Taken from drawings sets issued 02/08/2021: AUCKLAND LIGHT RAIL - DOMINIUM- LIGHT RAIL-OPTION 1B-DRAWING INDEX version 1 AUCKLAND LIGHT RAIL - DOMINIUM- LIGHT METRO-OPTION 2B-DRAWING INDEX version 1 AUCKLAND LIGHT RAIL - SANDRINGHAM-LIGHT METRO- OPTION 2A-DRAWING INDEX version 1 AUCKLAND LIGHT RAIL - SANDRINGHAM-LIGHT RAIL-OPTION 1A-DRAWING INDEX version 1 AUCKLAND LIGHT RAIL - SANDRINGHAM-HYRBID-OPTION 3- DRAWING INDEX version 1
	Medium	Utilities	Partial	ALR briefing presentation by Alastair Stewart on 2/08/21

Table 9: Construction activities assessed and source of information

High	Earthworks	Partial	ALR briefing presentation by Alastair Stewart on 2/08/21
Medium	Pavement materials for new roads	No	No source available. Recommended to be used for DBC assessment.
Low	Plant and equipment use	Partial	Drawings (as above) Assumptions around operations of hours for TBM use and specifications were made based on Melbourne metro ¹⁴
High	Transportation of materials	No	No source available. Recommended to be used for DBC assessment.
High	Bridges	Yes	Drawings (as above)
Medium	Retaining walls	No	No source available. Recommended to be used for DBC assessment.
Medium	Manufacture of rolling stock	No	No source available. Recommended to be used for DBC assessment.
Medium	Depot	No	No source available. Recommended to be used for DBC assessment.
Low	Culverts	No	No source available. Recommended to be used for DBC assessment.
Low	Fencing	No	No source available. Recommended to be used for DBC assessment.
High	Stations	Partial	Drawings (as above) Project references were used to develop estimates of the carbon emissions from the construction of stations. Reference cases include a confidential project ¹⁵ , Shenzhen, Wuhan, Shenyang ¹⁶ , Dadongmen station ¹⁷ , Melbourne Metro ¹⁸ , and the Sheppard line ¹⁹ .

9.5.2 Calculation methods & assumptions

The following table sets out the assumptions made for each of the construction activities assessed.

¹⁵ Taken from Arup's internal carbon insights platform for infrastructure

¹⁹ Mao et al. (2021). *Global urban subway development, construction material stocks, and embodied carbon emissions*. Available from: <u>https://www.nature.com/articles/s41599-021-00757-2</u> ¹⁷ Kaewunruen et al. (2020). *Digital twin aided sustainability and vulnerability audit for subway stations*. Available from: <u>https://ideas.repec.org/a/gam/jsusta/v12y2020i19p7873-d418024.html</u> ¹⁸ MMRA (2018). *Greenhouse gas*. Available from: https://materotuppel.via.gov.ov/

https://metrotunnel.vic.gov.au/__data/assets/pdf_file/0013/51052/MMRP_Chapter-22_Greenhouse.pdf

¹⁹¹⁹¹⁹ Saxe et al. (2017). *The net greenhouse gas impact of the Sheppard Subway Line.* Available from: <u>https://www.semanticscholar.org/paper/The-net-greenhouse-gas-impact-of-the-</u>Sheppard-Line-Saxe-Miller/a69f0acc3e2edfd55eaf59922befffcd7e37927f

Table 10: Assumptions made for assessing construction activities

Activity	Assumptions	
Earthworks	It is assumed that the spoil is dominated by tunnel spoil or spoil produced by trenching, tunnelling, relocating utilities, and constructing the underground stations. It does not quantify the level of emissions that are associated with earthworks as the volume of earthworks have yet to be quantified.	
Rail tracks – at grade, trenching, tunnelling	Standard multipliers for steel and concrete requirements per unit length of rail, rail driveway, and tunnels, were derived from previous studies. Type of rail track was assumed to be a slab track. It was assumed there are 2 rails per track. Elements included for assessment: rail section, grouting, concrete, lining/protection layers, subgrade, and ballast.	0
Bridges	Standard multipliers for steel and concrete requirements per unit bridge were derived from previous studies. Elements included for assessment: concrete, steel, asphalt, protection layers, piping. It was assumed that 25kg reinforced steel is used per m3 of concrete for tunnels. Bridge cross sections were approximated from typical bridge structures developed for this project, and column heights were estimated from the alignment.	
Stations	It is assumed that the carbon emissions from constructing stations around the world will be similar to the emissions from constructing emissions in this project. There is a large amount of uncertainty in the estimates from the calculation of carbon emissions for stations, as emissions factors, station sizes, and material requirements will all differ	
ТВМ	TBM specifications were assumed to be similar to the TBM used for the construction of Melbourne Metro. It was assumed power consumption of the TBM would be 2500 kwh with a load factor of 50%, the TBM would travel 10 m/day and the TBM would be operating 20 hours a day.	

Output for each option:

Indicative estimates of level of earthworks required for each option

- Carbon emissions from constructing rail tracks
- Carbon emissions from constructing bridges
- Carbon emissions from constructing stations

Carbon emissions from operating the TBM

Figure 9-2: Construction carbon emissions model output

The following paragraphs present an in-depth summary of the methodology for each of the assets constructed.

Earthworks emissions

Earthwork carbon emissions typically result from the use of plant equipment and the transport of spoil to disposal sites. As the volume of earthworks required has yet to be quantified, assessment of earthworks have been to simply evaluate the extent of earthwork intensive activity (construction of underground stations, trenching, and tunneling) for each of the options. Each option was assessed with a low, medium, or high rating corresponding to the level of required earthworks.

Rail tracks emissions

The main constituents of a slab track are rail section (steel), grouting (grout), concrete slab (precast reinforced concrete); hydraulically bound layer (aggregate and binder); protection layer (aggregate and binder); subgrade layer (sand); and ballast (crushed rock/gravel).

The following tables sets out the carbon profiles for a typical slab track for an at-grade section (Table 11), a tunnel section (Table 12), and a trenched section of track (Table 13). It contains detail on material types, percentage of asset mass, and GHG emissions per meter of track.^{20, 21}

Slab track – at grade emissions

Major element	Material	Density (ka/m³)	Mass (kg/m	% of Asset	GHG emissions	GHG
		(track)	(mass)	factor	(kgCO₂e/m
					(kgCO₂e/kg)	track)
Rail Section	steel	7,800	74	1	3.97	293.78
Grouting (including shear keys)	grout	1,860	459	4	0.74	339.68
Concrete slab in open section	precast reinforced concrete (RC)	2,200	1,364	1 I	0.23	313.72
Hydraulically bound layer (cast in-situ)	aggregate and binder	2,240	2,172.8	18	0.01	11.3
Protection layer	aggregate and binder	2,240	2,172.8	18	0.01	11.3
Subgrade layer	sand	2,240	2,172.8	18	0.01	11.3
Ballast	crushed rock / gravel	2,240	3,920	32	0.01	20.38
TOTAL						1,001.46

Table 11: Emissions from constructing at-grade rail tracks

Slab track-bored tunnel section emissions

Table 12: Emissions from constructing tunnels

Major element	Material	Density (kg/m³)	Mass (kg/m track)	% of Asset (mass)	GHG emissions factor (kgCO₂e/kg)	GHG emissions (kgCO₂e/m track)
------------------	----------	--------------------	-------------------------	-------------------------	---	---

²⁰ Taken from Arup's internal carbon insights platform for infrastructure

²¹ Emissions factors for steel and concrete were taken from BRANZ CO2nstruct. Steel values were based off "Steel, bar (Pacific steel" and 30MPa concrete with 50 kg/m3 steel reinforcing where relevant.

Major	Material	Density	Mass	% of	GHG	GHG
Slab track – tre Table 13: Emission	enched secti	on emissio	ons sections of rail tra	ack KC	mar	
TOTAL						1,201.6
Subgrade layer	sand	2,240	2,172.8	16	0.01	11.3
Protection layer	aggregate and binder	2,240	2,172.8	16	0.01	
Hydraulically bound layer (cast in-situ)	aggregate and binder	2,240	2,172.8	16	0.01	11.3
Concrete slab in bored tunnel	in-situ reinforced concrete (RC)	2,300	2,544	19	0.21	534.24
Grouting (including shear keys)	grout	1,860	459	3	0.74	339.68
Rail section	steel	7,800	74	1	3.97	293.78

Slab track – trenched section emissions

Major element	Material	Density (kg/m³)	Mass (kg/m track)	% of Asset (mass)	GHG emissions factor (kgCO₂e/kg)	GHG emissions (kgCO₂e/m track)
Rail section	steel	7,800	74	0	3.97	293.78
Grouting (including shear keys)	grout	1,860	459	3	0.74	339.68
Concrete slab in cut and cover tunnel	in-situ reinforced concrete (RC)	2,300	5016	31	0.21	1,053.36
Hydraulically bound layer (cast in-situ)	aggregate and binder	2,240	2,172.8	14	0.01	11.3
Protection layer	aggregate and binder	2,240	2,172.8	14	0.01	11.3
Subgrade layer	sand	2,240	2,172.8	14	0.01	11.3
Ballast	crushed rock / gravel	2,240	3,920	25	0.01	20.38
TOTAL						1,741.1

The largest sources of carbon emissions come from the steel and concrete for each of the track types. Trenched sections of rail are far more carbon intensive than at grade rail section and tunneled sections.

Bridge emissions

The key constituents and elements of a typical bridge include the following: reinforced concrete (piers, deck slab, abutment walls, piles, pile caps, beams), steel (beams and bolts), asphalt, protection layers, and piping.

Tahla	11.	Emissions	from	constructing	2	hridao
rable	14.	EIIIISSIOIIS	110111	constructing	a	bridge

Material	Location	Worst- case % of bridge volum e	Densit y	Normalise d mass (kg/m3 of asset)	GHG emission factor (kgCO2e/kg	Normalised GHG emissions (kgCO2e/m 3 of asset)
Reinforce d concrete	Pier, deck slab, abutment wall, piles, pile caps, transition slab, beams, parapet	92%	2,300	2,116	0.23	486.68
Concrete (non- reinforced)	Kerbs	<1%	2,200	22	0.13	2.86
Steel	Beams	2%	7,800	156	3.97	619.32
Steel	Bolts	0.8	7,800	11	3.97	43.67
Steel	Expansion joints (1%)	1%	7,800	78	3.97	309.66
Teflon- coated steel	Pot bearings	0.02	7,800	1.6	3.97	6.352
Elastomer	Joints and bearings	0.10%	1,500	2	2.85	5.7
Hot rolled asphalt	Carriageway s	<1%	1,700	17	0.066	1.122
	<u> </u>					

²² Taken from Arup's internal carbon insights platform for infrastructure

²³ Emissions factors for steel and concrete were taken from BRANZ CO2nstruct. Steel values were based off "Steel, bar (Pacific steel" and 30MPa concrete with 50 kg/m3 steel reinforcing where relevant.

Drainage stone	Drainage	1%	2,240	22	0.005	0.11	
Concrete (non- reinforced)	Drainage	2%	2,200	44	0.13	5.72	6
PVC/PE	Drainage	0.10%	1,380	1	3.1	3.1	00
Total						1,485.864	

Where not provided, dimensions were estimated from other drawings or approximated. Some bridge designs were not provided, so the dimensions were estimated to be similar to type C bridges (the bridge with the largest volume). There will likely be significant variance in these estimates once designs have been completed, as most measurements were not provided, and bridges have yet to be fully designed.

Station emissions

Carbon emissions from the construction of stations primarily come from the quantity of materials required to build the station (primarily steel and concrete). As the quantity of materials have yet to be determined, estimates of the carbon emissions from the construction of stations are high level and were developed relative to the other options. This assessment only looked at the embodied materials used for constructing the stations, not the volume of earthworks required for the construction of underground stations so as to not double count. The volumes concrete and glass required to build light rail stations were estimated from light rail station drawings (Table 15). The emissions from constructing metro and subway stations from around the world including Melbourne Metro²⁴, Dadongmen station (subway station in China)²⁵, Sheppard subway line (Canada)²⁶, and subway stations in Shenzhen, Wuhan, and Shenyang²⁷ (Table 16). As the size of the stations are yet to be determined, it is difficult to approximate what the relative carbon impact will be. The emissions from constructing above ground stations were based off the emissions produced for the emissions produced from constructing the stations from a confidential rail project (Table 16).²⁸

²⁴-MMRA (2018). Greenhouse gas. Available from: <u>https://metrotunnel.vic.gov.au/__data/assets/pdf_file/0013/51052/MMRP_Chapter-22_Greenhouse.pdf</u>

²⁵ Kaewunruen et al. (2020). Digital twin aided sustainability and vulnerability audit for subway stations. Available from: <u>https://ideas.repec.org/a/gam/jsusta/v12y2020i19p7873-d418024.html</u>
 ²⁶ Saxe et al. (2017). The net greenhouse gas impact of the Sheppard Subway Line. Available from: <u>https://www.semanticscholar.org/paper/The-net-greenhouse-gas-impact-of-the-Sheppard-Line-Saxe-Miller/a69f0acc3e2edfd55eaf59922befffcd7e37927f</u>

²⁷ Mao et al. (2021). Global urban subway development, construction material stocks, and embodied carbon emissions. Available from: <u>https://www.nature.com/articles/s41599-021-00757-2</u>
 ²⁸ Taken from Arup's internal carbon insights platform for infrastructure

Table 15: Emissions from constructing a light rail station

Major element	Material	Density (kg/m³)	GHG emissions factor (kgCO ₂ e/kg)	GHG emissions (kgCO₂e/m3)	Volume per station	GHG emissions (tCO₂e/station)	
			Light rai	l station			\sim
Roof	Glass	2,500	1.18	2,950	4.212	12.4254	5
Concrete slab (cast in- situ)	Concrete	2,300	0.21	483	308	148.764	
Total						161.1894	

Table 16: Reference rail station construction emissions

Emissions per station (tCO2e)	Size
Ý.O.	
59,600	Large
16,279	Small
60,258	Large
34,515	Medium
4,636	
	Emissions per station (tCO2e) 59,600 16,279 60,258 34,515 4,636

TBM electricity

TBM specifications were assumed to be similar to the TBM used for the construction of Melbourne Metro. It was assumed power consumption of the TBM would be 2500 kwh with a load factor of 50%, the TBM would travel 10 m/day and the TBM would be operating 20 hours a day. Emissions factors was taken from the Ministry for the Environment. A factor of 0.101 kgCO2e/kwh was used from table 9 of the guide for measuring emissions from the electric grid.²⁹ It should be noted that two tunnels must be constructed for metro schemes.

9.5.3 Exclusions for construction emissions

- Emissions from the transportation of material/earthworks
- C Emissions from constructing new roads
- Emissions from manufacturing rolling stock
- Emissions from constructing retaining walls
- Emissions from constructing culverts and fencing
- Emissions from the use of plant equipment

²⁹ MfE (2020). *Measuring emissions: a guide for organisations*.

9.5.4 Results

Earthworks

The options were compared to each other based on the relative difference in intensity of required earthworks from constructing the alignment and constructing the underground stations. Light metro options require significantly more earthworks than light rail options, due to tunneling, trenching and the need for underground stations. Light rail down Sandringham road requires significantly more earthworks than Dominion road options due to the need to relocate a number of utilities. nActî

Table 17: Assessment of the level of earthworks required

	Option 1b	Option 2a	Option 3
Rail track - At grade (%)	86%	32%	48%
Rail track - Tunnelled (%)	0%	48%	39%
Rail track - Trenched (%)	14%	20%	12%
Underground stations	1	12	10
Utilities	High	Medium	Medium
Score	Low	High	High

Rail tracks

Trenching is the most emissions intensive activity, so options that require less trenching perform better than those that require more. Options 1a and 1b produce the lowest level of emissions for constructing the rail tracks.

Table	18:	Emissi	ons fre	om co	onstru	cting	rail	tracks

í.						
			Emissions factor	Option	Option	Option
			(kgCO2e/m track)	1b	2a	3
				00.7	7.0	11.0
		I rack length (km)		20.7	7.6	11.8
	At grade	GHG emissions				
		(kgCO2e)	1,001	20,700	7,611	11,817
		,	,	,	,	,
	Tunnelled	Track length (km)		0.0	11.6	9.7
		GHG emissions				
		(kaCO2e)	1 202	0	13 975	11 610
C	0	(190020)	1,202	U	10,070	11,015
X		Track length (km)		3.3	4.8	3.0
	Trenched					
	Trononou	GHG emissions	. –			
		(kgCO2e)	1,741	5,798	8,305	5,276
		GHG emissions				
	Total	(tCO2e)		26.498	29.891	28.712
		(,		,	,•••.	, _

Bridge emissions

Light metro and the hybrid options performed better in this assessment as much of the alignment is tunneled, so fewer bridges/viaducts are required. Emissions from constructing bridges for light rail options are fairly significant.

bridges for light rail options are fairly signi	ificant.			
Table 19: Emissions from constructing bridges				2
	Option 1b	Option 2a	Option 3	
Bridge length (m)	3.06	2.32	2.9	
Bridge volume (m3)	57,778	34,480	53,592	
GHG emissions (kgCO2e/kg of asset)	<u>.</u>		1486	X.
GHG emissions (tCO2e)	85,851	51,233	79,630	
				•
Stationa				

Stations

The options were compared with each other based on the relative size and number of stations. Overall, the light rail options would produce lower amount of carbon emissions due to smaller station sizes that are easily constructable above ground-

Table 20: Estimate	s of the emis	ssions from	constructina	new stations
Table Lo. Loundato			oonou aoung	non olaliono

	Option 1b	Option 2a	Option 3
Underground stations - small	1	1	0
Emissions factor (tCO2e/station)		16,279	
Underground stations - medium		8	5
Emissions factor (tCO2e/station)		34,515	
Underground stations - large	0	3	3
Emissions factor (tCO2e/station)		59,600	
Surface stations	21	5	10
Emissions factor (tCO2e/station)	161	4,636	161
Emissions (tCO2e)	19,664	494,381	352,987

TBM electricity

Using factors derived from studies on the typical energy use of TBM's and emissions factors for electricity consumption, an estimate for the carbon emissions for the options was calculated. Light metro options were the only options that required tunneling, so they performed worse than light rail options.

Table 21: Emissions from operating the TBM

	Option 1b	Option 2a	Option 3
Tunnelling length (km)	0	11.63	9.67
Energy consumption MWh	0	58,150	48,350
Emissions factor (tCO2e/MWh)			0.101

	•	
•		
002		

GHG emissions (tCO2e)	0	5,873	4,883
-----------------------	---	-------	-------

9.5.5 Results summary for construction

Light metro options create more construction emissions than light rail options. The construction of underground stations is the primary source of carbon emissions for light metro options. The construction of bridges is the primary source of carbon emissions for light rail options. Construction of a light rail and metro down Sandringham creates more carbon emissions than one down Dominion road due to the longer track distance and the greater number of stations. It should be noted that the estimates for light metro stations contain the largest amount of uncertainty, due to estimates being based off reference projects. Therefore, the estimates have been presented with an uncertainty factor of +/- 40%. Once the bill of quantities for constructing the underground stations have been completed, it is likely these values will change.

Note: Total emissions are a combination of emissions from the rail tracks, bridges, stations and TBM. A range has been provided to account for uncertainty on the specific assets that will be evaluated at future stages (DBC).

	Asset (tCO2e)	Opti	ion 1b	Opti	on 2a	Opti	on 3	
	Rail track	26	,498	29,	891	28,	28,712	
	Bridges	85	,851	51,	233	79,	630	
	Stations	19	,664	494	,381	352	,987	
	TBM electricity		0 C	5,8	873	4,8	383	
	Total GHG emissions	132	2,013	581	,378	466	,213	
		Low	High	Low	High	Low	High	
	Total GHG emission (lower to upper range)	79,000	185,000	349,000	814,000	280,000	653,000	
	Earthworks	L	.OW	Н	igh	Hi	gh	
K	MCA Score		-1	-	-3	-	2	
		Option 1b p lower amou emissions t metro optic because of station size	produces a unt of carbon than light ons, mainly the smaller es.	Option 2a p highest amo carbon emis mainly beca higher num	produces the punt of ssions, ause of the ber of	Option 3 pro higher amore carbon emis light rail opt because of number of s	oduces a unt of ssions than ions, mainly the higher stations that	

Table 22: Carbon emissions from construction

The majority of construction emissions	stations that are located underground.	are located underground.	
come from the large number of bridges required for the option.	The construction of underground stations are emissions intensive.	However, emissions are lower than light metro options because there are fewer underground stations and smaller stations past Mt Roskill.	<i>о</i> с ос

9.5.6 Benchmarking construction emissions

A literature review was conducted to assess the construction emissions from similar light rail and metro schemes from around the world.^{30, 31} An approximate length of 25 km is used for light rail schemes and 23 km for light metro schemes for ease of comparison. Adjusted emissions from the Tokyo light rail scheme are similar to the estimates of light rail schemes in Auckland. Adjusted emissions for Crossrail and Sheppard Subway are similar to the lower and middle estimates for light metro schemes.

Transp	Variable	Reference	Adjusted emissions	Project
ort		project	for Auckland context	
mode		emissions	(tCO2e)	
Light	Construction	5,000	• 142,500	Tokyo light rail - 10%
rail	emissions	tCO2/km		of the line was
			C V	tunnelled
Metro	Construction	12,712	308,266	Crossrail
	emissions	tCO2/km		
Subway	Construction	30,445	738,291	Sheppard subway line
	emissions	tCO2/km		
Metro	Construction	7,1333	1,640,667	Melbourne Metro
	emissions	tCO2/km		
Metro	Construction	39,455	907,459	Sydney Metro
	emissions 📿	tCO2/km		
Rail	Construction	55,391	1,274,000	CRL
	emissions	tCO2/km		

Table 23: Light rail and metro construction emissions benchmarked with similar projects

9.6 Transport system (enabled) carbon emissions

The transport system carbon emissions represent the carbon emissions associated from the use of the transport system as result of the ALR options. There is no established methodology for undertaking a user carbon emissions assessment and as a result a variety of assumptions have been made. The key aim was to understand the contributing factors that's can help reduce emissions. These ranged from policy, regulatory, transport design factors. In addition to this, the modelling outputs from MSM were used to understand the Co2 emissions, as well as the mode shift from cars to PT/active modes across the 5 options

³⁰ Chester and Horvath (2009). *Environmental assessment of passenger transport should include infrastructure and supply chains*

³¹ Olugbenga et al. (2019). Embodied emissions in rail infrastructure: a critical literature review

and do min. Figure 9-3 shows the sources for data used to determine the potential impact on carbon from the transport system.

Figure 9-3: Inputs and sources for the Carbon Transport User Emissions Model Version 2

9.6.1 Data log table

Table 24 shows the datasets used for the transport system carbon assessment, it identifies the datasets which have the most impact on the MCA scores, the availability status and source.

Table 24 Transport system emissions assessed and sources of information	ation:
---	--------

	Most material impact	Dataset	Available for IBC MCA assessment?	Source/date/drawing name/document name
	Medium	GFA uplift % within 800m catchment of the stations	Yes	CAT model
	Medium	GFA for residential and commercial	Yes	CAT model
	High	Capacity per hour for all options	Yes	MCA briefing pack 2 Aug 2021
	Medium	No of stations for all options	Yes	MCA briefing pack 2 Aug 2021
	Medium	Journey time for all options	Yes	MCA briefing pack 2 Aug 2021
	High	Number of general traffic lanes removed	Partially	MCA briefing pack 2 Aug 2021
. 0	Medium	No. Of bus stops and urban interchanges	Yes	MCA briefing pack 2 Aug 2021
201	Medium	Cycle access to stations, new or retained cycle lanes/paths	Partially	MCA briefing pack 2 Aug 2021
	High	Mode shift from car	Yes	MSM
	High	Co2 emissions/yr	Yes	MSM
	High	TOD features at each station within 800m	No	No source available. Recommended to be

•		

used for DBC
assessment.

9.6.2 Activities assessed for transport system carbon emissions

- 1. Emission reduction potential based on factors that would influence mode-shift, or influence uptake in zero emission mobility
- 2. MSM carbon emissions
- 3. MSM mode shift from car

082 Table 25 shows the factors assessed for activity 1 to determine the emission reduction potential of the options. The table shows the metrics measures based on the available data and shows how it aligns to the MCA criteria. While there are a number of other factors that can help reduce transport emissions, the scores of these factors where the same across all the options and therefore did not help differentiate between the options. For this reason, they were excluded from this assessment and not shown in Table 25.

	Factors for activity 1	The most important factors that differentiated the options were:	MCA criteria
	Transit oriented development (TOD) Zoning - mixed use (residential and zoning) vs single use complemented by higher population density	 Increased development density via GFA uplift within the 800m catchment, 	Supports high density low carbon urban uplift
	Urban planning	 Equal split in mixed use zoning via GFA uplift for residential and employment zones, removal of general traffic road capacity. 	Supports high density low carbon urban uplift Station proximity and accessibility to users (residential, town centres, employment, medical, education)
	Light rail, metro rail and commuter rail systems	• An attractive PT via light rail/light metro would promote mode choice to PT and away from the car based on the capacity, travel time, number of stations provided.	Ability to effect mode shift and travel patterns (i.e. attract patronage, reduced peaks)
	Removing road capacity for passenger travel	 Fewer road capacity for general traffic means PT and active modes become more attractive options. 	Ability to effect mode shift and travel patterns (i.e. attract patronage, reduced peaks)
X	Bus rapid transit	 Attractive bus rapid transit to support connection to the light rail/light rail system (number of stations and urban interchanges along the proposed alignment) would promote interconnectivity to other transit and active modes. 	Interconnectivity to other transit and/or active modes

Table 25: Transport activities assessed and associated drivers of carbon emissions for activity

Bicycle infrastructure	 Provision of improved cycle infrastructure and connection to existing cycle network promotes the use of low emission modes. 	Interconnectivity to other transit and/or active modes	
9.6.3 Calculation methods 8	assumptions		9
Table 26 outlines the methodolog	gy to assess the three activities f av assumptions made and the re	for transport system carbon	2

Calculation methods & assumptions 9.6.3

Table 26 outlines the methodology to assess the three activities for transport system carbon emissions. It also captures the key assumptions made and the reasoning behind how the activities were scored.

Table 26: Methodology and assumptions made for assessing transport system emissions

	Methodology for each activity	Assumptions	Reasoning based on research
Rele	 Activity 1 Identified the list of factors/interventions (policy, regulatory, design features, market driven) that can help reduce emissions from transport for the Arup GHG Tool Identified which ones were out of scope at the IBC stage Narrowed down the factors based on the data available at this stage and identified which would have the most material impacts. The GHG rating was assigned to each of the factors based on the GHG rating of emission reduction potential to the MCA score. See Table 27. Activity 2 We used the 2018, 2031 and 2051 carbon emissions from the MSM model and assigned an MCA score. Activity 3 We used the 2018, 2031 and 2051 mode-shift % from the MSM model and assigned an MCA score. 	Each option includes do min plus the specific design features for the options modelled on MSM.	The justifications for the GHG rating were based on literature review. These were used to inform the impact the interventions/factors could have on emissions from the transport system.

	Category
High to Medium emissions reduction potential	5,6,7
Medium to Low emissions reduction potential	2,3,4
Low to Neutral emissions reduction potential	
Potential to increase emissions	0
underthe	altic

Table 28 captures the assumptions and metrics assessed to determine the GHG rating.

Table 28: Assumptions and metrics used to assess activity 1 and get a GHG rating

Sub-Categories	MCA criteria	Do min (comparison across options not across scenario years)	Option 1b-LR Dominion	Option 2a- LM Sandringham	Option 3- LR LM hybrid Sandringham
Transit oriented development (TOD) Zoning - mixed use (residential and zoning) vs single use complemented by higher population density	Supports high density low carbon urban uplift		Sandringham has a more equal split in residential and commercial GFA (using the AUP GFA) than the dominion rd. Options within an 800m radius of the stations. Densities are relatively similar across all options.	Sandringham have a more equal split in residential and commercial GFA (using the AUP GFA) than the dominion rd options within an 800m radius of the stations. Densities are relatively similar across all options.	Sandringham have a more equal split in residential and commercial GFA (using the AUP GFA) than the dominion rd. Options within an 800m radius of the stations. Densities are relatively similar across all options.
Urban planning codes and practices	Supports high density low carbon urban uplift - Station proximity and accessibility to users (residential, town	d under the	Is there Higher development density and mixed-use zoning? = 9.5%GFA uplift due to the option. Are the employment and residential centres closer to each other due land use changes or new developments? = less increases in residents,	Is there Higher development density and mixed-use zoning? = 11.5% GFA uplift due to the option. Are the employment and residential centres closer to each other due land use changes or new developments? = higher increases in residents,	Is there Higher development density and mixed-use zoning? = 11.3% GFA uplift due to the option. Are the employment and residential centres closer to each other due land use changes or new developments? = higher increases in residents,
\$	elec				46

	centres,		employees, and	employees, and	employees, and
	employment.		households along the	households along the 👗	households along the
	medical.		corridor than LM options	corridor than LR options	corridor than LR options
	education)				
				~`	
Light rail, metro	-Ability to	LR/LM access points = 0	LR Access points = 22	LM Access points = 17	LR/LM access points = 10
rail and	effect mode	stations	stops, which means	stations, which means	stops, 8 stations. Good
commuter rail	shift and	LR/LM Capacity = 0	shorter distances than LM,	longer distances than LR,	catchment in suburbs and
systems	travel		and it has a larger urban	and it has a smaller urban	adequate catchment in
	patterns (i.e.		area catchment.	area catchment.	city centre.
	attract		Headway=4min peak.	LM Capacity = 11600	LR/LM Capacity = 8400
	patronage,		LR Capacity =6300 people	people per hour per	people per hour per
	reduced		per hour per direction.	direction.	direction.
	peaks) *		Journey time = 57 min.	Headway=3min peak.	Headway=3min peak
				Journey time = 36min.	Journey time = 44min
				,	,
Removing road	-Ability to		LR options are on the	LM options are not on the	Some of the existing road
capacity for	effect mode		existing road corridor, it is	road corridor, so it is	corridor will have general
passenger travel	shift and		assumed that existing	assumed that existing	traffic lanes removed for
	travel		lanes for general traffic	lanes for general traffic	LR, however options 1a
	patterns (i.e.		will be removed to make	will remain.	and 1b would result in
	attract		room for LR.		more general traffic lanes
	patronage,				being removed.
	reduced				
	peaks) *				
	Interespect	Number of stations along	Number of stations along	Number of stations along	Number of stations along
Bus rapid transit	interconnecti	the model of stations along	Number of stations along	Number of stations along	Number of stations along
	vity to other	the proposed LR/LIVI	the proposed LR/LM	the proposed LR/LM	the proposed LR/LIVI
	transit	alignment are accessible by	alignment are accessible	alignment are accessible	alignment are accessible
	and/or active	bus = 0	by bus = 7 on street stops	by bus = 4 on street stops	by bus = 4 on street stops
	modes*	Journey time = na	(Isthmus section)	(Isthmus section)	(Isthmus section)
			3 urban interchanges = Mt		3 urban interchanges =
	0				47

			Roskill, Onehunga, and	3 urban interchanges =	Wesley, Onehunga, and
			Mangere Town centre	Wesley, Onehunga, and	Mangere town centre
			5	Mangere town centre	6
Bicycle	Interconnecti	Will the existing cycle or	City centre - Aligns with	City centre - active mode	Existing cycle quiet routes
infrastructure,	vity to other	shared lanes/paths remain?	existing A2E and cycle	connection to stations	adjacent dominion and the
networks, and	transit	= yes, shared lane on Queen	network planning.	Existing cycle quiet routes	shared paths along approx.
support	and/or active	st will remain, and shared	There is also currently	adjacent dominion and the	half of the SH20 part of
programmes	modes*	path in airport to remain.	shared lanes on Queen st,	shared paths along	the alignment give cycle
		Existing cycle quiet routes	these would give access to	approx. half of the SH20	access to 9/18 of the
		adjacent dominion and the	3 stations along this 🍃 🦰	part of the alignment give	proposed stations.
		shared paths along approx.	section of the corridor.	cycle access to 9/17 of the	Will these existing cycle
		to remain	Will the existing shared	proposed stations.	routes remain? = yes,
		Are there new proposed	lanes on Queen st remain?	Will these existing cycle	queen st shared lane, and
		cycle lanes/paths or shared	= yes, and shared path in	routes remain? = yes, and	shared path in airport to
		paths?= no	airport to remain.	shared path in airport to	remain
		Accessibility to stations -	Are there new proposed	remain	Are there new proposed
		more stops to access at	cycle lanes/paths or	Are there new proposed	cycle lanes/paths or
		surface level, more touch	shared paths? = yes, new	cycle lanes/paths or	shared paths? = new
		points along the corridor, 👝	shared path bridge across	shared paths?= new	walking and cycle
		more active mode	Central motorway junction	walking and cycle	connections at dominion
		improvements in the city	after k rd station. new	connections at dominion	rd. junction.
		centre.	walking and cycle	rd. junction	
			connections at dominion	Accessibility - less stations,	
			rd junction.	longer distance between	
			Accessibility - more stops	access, underground	
			to access at surface level,	access is an inconvenient	
		$\mathbf{\lambda}$	more touch points along	factor, specific focuses	
			the corridor, more active	around stations for WC	
		0			
	2				
	. 0.0				
	X				10
	V				40
· · · · · · · · · · · · · · · · · · ·					

	mode improvements in	provision, station locations	•
	the city centre.	are different to LR options	

9.6.4 Results

Table 29 shows the results of the 3 activities accessed for do min and all 5 options. It also shows the MCA scores for each activity.

Table 29: Results of transport system carbon emissions assessment

		Do min	Option 1b-LR Dominion	Option 2a- LM Sandringham	Option 3- LR LM hybrid Sandringham
Transport System	GHG average rating	1.5	4.7	4.2	4.5
emissions	Mode shift % from do min (+ means a reduction of car mode share from do min option)	Ś	+5.0%	+6.5%	+6.3%
	Emissions from MSM Co@ tCO2e/year	1,706,000	1,684,000	1,677,000	1,678,000
	MCA score	-2	1	3	2
	1-2 sentences of reasoning for user emission score	The do min score is significantly worse than all other options.	Option 1b provides less capacity/hour than the light metro and hybrid options. It has more stations along the proposed alignment compared to the metro and hybrid options. The option scored better than the hybrid and light metro options	Option 2a performed better than light rail options in terms of supporting high density urban development and has more capacity/hour to encourage mode shift. It is likely to provide more general traffic lanes than the	Option 3 performs better than light rail options but slightly worse than light metro options in terms of supporting urban density uplift. The key advantage of option 3 over options 2a is its ability to remove space from road
Re	S.				49

	infrast provis carbo from t mode carbo from t Auckla 1,684 tCO2e option highes emiss shift fr PT/ac 5.0%. traffic to be light ra metro option	tructure ion. The n emissions he MSM lling show n emissions ransport across and producing ,000 e/year, with 1 b with the st carbon ions. The mode rom car to tive modes was More general roads are likely removed for ail options than and hybrid is.	the hybrid option. The carbon emissions from the MSM modelling show carbon emissions from transport across Auckland producing 1,677,000 tCO2e/year, with option 2a with the lowest overall carbon emissions. The mode shift from car to PT or active modes was 6.5%.	make driving a less attractive option. However, in this regard, light rail options perform better. Mode shift from this option is higher than light rail options but lower than light metro options. The carbon emissions from the MSM modelling show carbon emissions from transport across Auckland producing 1,678,000 tCO2e/year, with higher carbon emissions than light metro, but lower than light rail options.
Released und				50

9.7 Carbon emission reductions from the reduced demand for new roads

An impact of the light rail/light metro systems is that there will be a reduced need to travel by private vehicles on roads. This means that fewer roads need to be constructed. As part of the -t~98 Method 3 calculations, an estimate was made for emissions savings from having to construct fewer roads.

9.7.1 Data log table

Table 30 shows the variables that were considered as part of this assessment

Table 30: Data log for assessing carbon reductions from reduced demand for new roads

Material impact	Dataset	Available for IBC MCA assessment?	Source
High	Car trips during the morning peak	Yes	MSM model outputs
High	Road cross sections + emissions factors	Yes	Arup's internal carbon insights platform for infrastructure, BRANZ CO2nstruct model, Greenhouse Gas Assessment Workbook for Road Projects ³²

Calculation methods & assumptions 9.7.2

Table 31 details the methodology and assumptions made for assessing carbon reductions from reduced demand for new roads.

Table 31: Methodology and assumptions made for assessing carbon reductions from reduced demand for new roads

Methodology	Assumptions
Calculate reduction in morning peak demand for private vehicle trips for each option	Peak hour travel demand factor of 0.6 was used to convert 2h peaks into 1h peaks.
Calculate number and length of vehicle lanes not required	Traffic lane capacity of 1000 veh/hour was used. Number of lanes required was rounded up, as part of a lane cannot be constructed. It was assumed there would be 2 trips per vehicle (one during the morning peak, and one during the evening peak).
Calculate area of car parking not required due to decreased vehicle trip demand	Each car park would require 30 m2 of space – for the car park and for manoeuvring, and each vehicle would require a car park space at the origin and destination of the trip.

³² Waka Kotahi (2013). Greenhouse Gas Assessment Workbook for Road Projects. Available from: https://www.nzta.govt.nz/assets/resources/greenhouse-gas-assessment/docs/greenhouse-gasassessment-workbook-road-projects.pdf

9.7.3 **Results**

The results show that there are fairly significant savings from the reduced need to construct new roads. Emissions reductions range from 14,700 to 19,000 tCO2e. Options 2b and 3 reduce car travel demand the most, so emissions reductions are highest for these options.

Table 32. Results	of the road	1 construction	Amissions	assassmant
Table SZ. Results	or the road		ennissions	assessment

Fmissions		Options								
savings from	Light Rail L		Light Metro	Hybrid						
reduced need to build roads		1B	2A	3						
	Do Minimum	Dominion	Sandringham	Sandringham						
Car Trips (morning peak (2h) in Auckland)	711,886	703,031	702,124	702,335						
Car trips not made		8,855	9,762	9,551						
Peak hour travel demand (veh/h)		5,313	5,857	5,730						
Number of lanes not required		6.0	6.0	6.0						
Av. Trip Length (km)	C.	1	1.5							
Equivalent Arterial Road Length not required - lane kms*	derthe	138	138							
Emissions factor for roads (kgCO2e/m)		96	5.6							
GHG emissions savings - roads (tCO2e)*		13,333	13,333	13,333						
Parking space not required (sq. m)		531,300	585,720	573,060						

Material Volume - carpark (m3)	265,650	292,860	286,530	
Emissions factor for carparks (kgCO2e/m3)	59).5		<u>_</u>
GHG emissions savings - carparks (tCO2e)*	15,794	17,412	17,036	
GHG emissions savings (tCO2e)*	29,127	30,745	30,369	

*Modelled based off peak travel demand for 2051

9.8 Carbon emission reductions from building houses in brownfield areas

Building houses in greenfield and brownfield areas produce different emission profiles. Dwelling typologies are different in greenfield and brownfield areas, and different dwelling types emit different levels of carbon emissions over their lifecycle. This assessment considers what the potential benefits might be from building tight rail and light metro and how this would impact where future growth in Auckland will occur.

9.8.1 Data log table

Table 33 shows the variables that were considered as part of this assessment

Material Datas Available for Source **IBC MCA** impact assessment? LCA of different High Yes 3 sources were used to housing typologies develop estimates for the lifecycle carbon emissions for 01825 different housing typologies: A science-based approac to setting climate targets buildings: The case of a New Zealand detached house³³ A Life Cycle Assessment of Medium

Table 33: Data log for assessing reduced emissions from building houses along the corridor

³³ Chandrakumar et al. (2020). A science-based approach to setting climate targets for buildings: The case of a New Zealand detached house. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0360132319307723?via%3Dihub

			 Density Houses in New Zealand³⁴ New Zealand whole of life framework: LCAQuick v3.4³⁵ 	
High	Distribution of housing typologies across Auckland	Yes	Stats NZ, Building statistics	S
High	Population increases across the corridor	Yes	MSM model outputs	J) -
High	Change in distribution of housing typologies in the future	No	To get a more complete understanding on the potential emissions savings, estimates are needed on how the proportion of apartments and townhouses built across the corridor will change	

9.8.2 Calculation methods & assumptions

Table 34 details the methodology and assumptions made for assessing operational emissions.

Table 34: Methodology and assumptions made for assessing emissions savings from building new houses

Methodology

standalone single-storey

Calculate emissions

areas and along the

CC2M corridor.

factors for building new

dwellings in greenfield

houses.

Assumptions

Develop an As consenting statistics do not distinguish between singleunderstanding of the storey and double-storey houses, it was assumed that all distribution of housing new houses built are stand alone, single-storey houses. It is assumed that the proportion of newly consented typology's (stand alone houses, apartments, and houses, apartments, and townhouses in greenfield areas townhouses) in and along the CC2M corridor will stay the same in the greenfield areas and future. However, it is likely a new rapid transit system along the corridor. along the corridor will increase the proportion of apartments and townhouses along the corridor. Houses built in the local board areas of Rodney, Hibiscus Coast, Waitakere Ranges, Howick, Papakura, and Franklin are all greenfield developments Calculate emissions Emissions estimates for building new townhouses and factors for new houses are taken from similarly sized townhouses and houses from reference cases residential apartments, townhouses, and

> All new houses along the corridor would have been built in greenfield areas without light rail/light metro, so emissions savings are the difference in emissions from building new dwellings along the corridor instead of building new dwellings in greenfield areas

 ³⁴ Ganda (2019). A Life Cycle Assessment of Medium Density Houses in New Zealand. Available from: <u>https://researcharchive.vuw.ac.nz/xmlui/handle/10063/8649</u>
 ³⁵ BRANZ (2021). LCAQuick: Life cycle assessment tool. Available from: https://www.branz.co.nz/environment-zero-carbon-research/framework/lcaquick/

Calculate emissions savings from building housing along the CC2M corridor per year Emissions savings were calculated based off projected population increases along the corridor for each option.

Analysis of Auckland housing consenting data shows that greenfield developments are dominated by standalone single-storey housing. New housing built along the CC2M corridor has primarily been new apartments and townhouses. Additionally, average GFA for new townhouses in Auckland is 122 m2, and average GFA for standalone houses is 214 m2.

Table 35: Distribution of housing typologies in greenfield areas and along the CC2M corridor

	Houses	Apartments	Townhouses, units,	and
				other
Greenfield areas	76%	2%		22%
CC2M	22%	53%		25%

Lifecycle analysis of each of the different housing typologies also show there are large differences in the construction and operational use of the housing typologies. In general, townhouses are the least carbon intensive housing typology, and standalone single-storey houses are the most carbon intensive. This primarily arises from the higher GFA in standalone single-storey houses in Auckland.

Table 36: Carbon emissions for different housing typologies (adjusted per person)

		Emissions factors
	U [*]	(kgCO2e/year/person)
Residential: Multi-Rise Apartments		615
Residential: MDH Townhouses, Multi-		419
Level		
Residential: Detached, Single Storey		762

Estimates for the carbon impact of building houses in greenfield areas and along the corridor can be developed using the above tables. The analysis shows that accommodating future growth along the corridor will result in emissions savings of 85 kgCO2e/year/person. These emissions savings primarily arise from lower energy requirements in denser housing typologies.

Table 37: Carbon emissions factors for building housing in greenfield areas and along the CC2M corridor

	Emissions factors
	(kgCO2e/year/person)
Greenfield areas	684
CC2M	598
Emissions savings	85

9.8.3 Results

Using the above emissions factors and projected population increases along the corridor, estimates for the emission savings from accommodating growth along the corridor can be made. The results show that emissions savings range from 1,100 to 1,400 tCO2e per year. These estimates do not include construction emissions savings from reduced need to build infrastructure to support greenfield areas.

ઝુઈં

Table 38: Results of the operational emissions assessment

			Options	
Emissions savings from	Do	Light Rail	Light Metro	Hybrid
corridor	Minimum	1B	2A	3
		Dominion	Sandringham	Sandringham
Population	259,688	306,227	341,132	341,132
Increase over do minimum		46,539	81,444	81,444
Emissions savings per year per per person (kgCO2e/yr/person)			85	A.
Emissions savings per year (tCO2e/yr)		3,970	6,947	6,947

9.9 VEPM fleet and emission factors assumptions

The VEPM 6.1 model was used to inform the MSM model which were this assessment to predict emissions from vehicles emissions in Auckland. VEPM outlines the fleet composition assumptions for including light vehicles and bus fleet. The VEPM 6.1 fleet composition assumptions were applied for the do minimum and other 5 options for all years modelled in MSM.

Table 39: VEPM 6.1 assumptions adopted for MSM³⁶

	Light duty vehicles <3.5tonnes									Hea	vy vehicle	es >3.5tor	ines		
Year	Car petrol	Car diesel	Car hybrid	Car plug- in hybrid	Car electric	LCV petrol	LCV diesel	LCV hybrid	LCV plug- in	LCV electric	Die sel HCV	Die sel Buses	Electric HCV	Electric Buses	0
2001	72.5%	6.9%	0.0%	0.0%	0.0%	6.4%	7.9%	0.0%	0.0%	0.0%	6.0%	0.4%	0.0%	0.0%	O'
2005	71.0%	7.9%	0.0%	0.0%	0.0%	5.0%	9.1%	0.0%	0.0%	0.0%	6.5%	0.5%	0.0%	0.0%	
2010	70.1%	7.6%	0.2%	0.0%	0.0%	4.1%	11.0%	0.0%	0.0%	0.0%	6.4%	0.6%	0.0%	0.0%	\sim
2015	67.5%	7.8%	0.6%	0.0%	0.0%	3.5%	13.4%	0.0%	0.0%	0.0%	6.5%	0.6%	0.0%	0.0%	
2020	64.2%	7.8%	1.2%	0.1%	0.3%	3.1%	16.0%	0.0%	0.0%	0.0%	6.5%	0.7%	0.0%	0.0%	
2025	61.4%	7.6%	1.9%	0.7%	1.7%	3.1%	16.1%	0.0%	0.0%	0.2%	6.3%	0.7%	0.0%	0.0%	
2030	54.5%	6.5%	3.0%	1.4%	7.8%	3.2%	15.5%	0.0%	0.0%	1.1%	6.0%	0/75	0.3%	0.1%	
2035	40.5%	4.5%	3.6%	2.2%	22.1%	3.1%	13.9%	0.0%	0.0%	3.2%	5.5%	8.7%	0.5%	0.1%	
2040	26.6%	2.8%	3.1%	2.5%	37.7%	2.7%	11.3%	0.0%	0.0%	6.6%	4.50	0.7%	1.0%	0.2%	
2045	17.2%	1.7%	2.5%	2.5%	48.4%	2.2%	8.4%	0.0%	0.0%	10.4%	4.0%	0.6%	1.6%	0.4%	
2050	12.5%	1.1%	1.8%	2.3%	54.3%	1.9%	6.3%	0.0%	0.1%	13.2%	3.2%	0.5%	2.2%	0.6%	

9.10 Assessment accuracy

This chapter captures the accuracy of the carbon assessment to inform the level of confidence in the results. Table 40 summarises the accuracy for each carbon source assessment using a traffic light system to represent percentage of accuracy (see the key). It also captures the commentary to describe the data availability, completeness, and impact on emissions which informs the accuracy rating.

³⁶ https://www.nzta.govt.nz/assets/Highways-Information-Portal/Technical-disciplines/Air-andclimate/Planning-and-assessment/Vehicle-emissions-prediction-model/VEPM-6.2-technical-report-2021.pdf

Table 40: Level of accuracy for carbon assessment

Red or orange or green to indicate accuracy of results based on data availability, and completeness of data	Emission source	Accuracy commentary	<u>_</u>
	User emissions.	Project and modelling data was used. 90% of the most impactful datasets were available for IBC carbon assessment. Most of the datasets were complete. The dataset not included in the IBC carbon assessment had a potentially high impact on carbon emissions.	× 1984
	Construction emissions	45% of the recommended datasets for this assessment were available at IBC. If these most had partial data available. Project and reference project data was used. The datasets not included in the IBC carbon assessment were a combination of datasets that would have a potentially low or medium or high impact on carbon emissions.	
	Operational emissions	Mostly complete data available at IBC. 40% of recommended datasets were available at IBC. Of these, most of the datasets were complete. Project and reference project data was used. The datasets not included in the IBC carbon assessment were a combination of datasets that would have a potentially low or medium or high impact on earbon emissions.	
	Carbon emission reductions from the reduced demand for new roads	Project data and estimates was used. The key datasets required were included in the IBC carbon assessment.	
	Carbon emission reductions from building houses in brownfield areas	Project data and estimates was used. The key datasets required were included in the IBC carbon assessment. The dataset not included in the IBC carbon assessment had a potentially high impact on carbon emissions.	KEY: 10-30% accuracy 30-70% accuracy 70%+ accuracy

The accuracy rating will improve as the design progresses and more datasets become available e.g. cost estimates bill of quantities.

Recommendations for DBC

182

It is recommended that the carbon assessment is conducted at each stage of the life cycle. This allows for increased confidence on results.

Figure 10-1 illustrates the importance of influencing low carbon projects earlier in the investment process. The PAS2080 allows for this through the actions set in for each of the work stages (shown in green). As more detailed and accurate information about the design becomes

available more accurate analysis should be undertaken to determine a clearer projection of the whole of life carbon profile of ALR.

The figure also shows that during the concept phase (IBC stage) it is important to introduce a Low Carbon Design Principles in the project ALR Sustainability Strategy to ensure the detailed design adopts emission reduction interventions. This Strategy would also demonstrate how ISCA is used in the business case process.

Figure 10-1: PAS2080 showing ability to influence carbon reduction across the life cycle of infrastructure delivery

Below is a list of the additional emissions that are recommended to be assessed in DBC once more detailed design information can be provided.

Operational emissions from the following assets:

- Station and depot operational requirements
- Trackside ventilation
- Lighting
- Asset maintenance
- Regenerative braking
- No of rolling stock
- Supporting infrastructure energy use
- Grid or private energy generation
- Renewable energy use %
- Backup generators
- Energy specifications of rolling stock

Construction emissions from the following activities:

- Transportation of materials
- New bridges
- Building retaining walls
- Manufacture of rolling stock

- **Building depot** •
- **Building culverts** •
- **Building fencing** •

Released under the Official Information Act 1982